损失函数是通过keras已经封装好的函数进行的线性组合, 如下: def spares_mse_mae_2scc(y_true, y_pred): return mean_squared_er ...
NaN的意思是not a number,不是一个数字。 梯度爆炸 一般loss的相关量是w gt w的相关量 更新方式 是梯度 gt 和梯度有关 原因:在学习过程中,梯度变得非常大,使得学习的过程偏离了正常的轨迹。 症状:观察输出日志 runtime log 中每次迭代的loss值,你会发现loss随着迭代有明显的增长,最后因为loss值太大以致于不能用浮点数去表示,所以变成了NaN。 可采取的方 ...
2020-02-24 18:57 0 2097 推荐指数:
损失函数是通过keras已经封装好的函数进行的线性组合, 如下: def spares_mse_mae_2scc(y_true, y_pred): return mean_squared_er ...
在训练神经网络的过程中往往要定时记录Loss的值,以便查看训练过程和方便调参。一般可以借助tensorboard等工具实时地可视化Loss情况,也可以手写实时绘制Loss的函数。基于自己的需要,我要将每次训练之后的Loss保存到文件夹中之后再统一整理,因此这里总结两种保存loss到文件的方法 ...
1 问题定义 时间序列预测问题,用历史数据,来预测未来数据 2 误差衡量标准 RMSE 3 网络结构 lstm单层网络结构 输出层为一个神经元 4 训练过程 loss函数采用MSE epoch = 20 5 实验结果 四次测试结果如下: lstm ...
each element in list of batch should be of equal size 代码中这部分表示自定义DataLoader的时候再__getitem__() 的时候输出的list长度不一致, 这里如果是bbox本来就输出多个不同数量的结果可以尝试自己自定义 ...
罪魁祸首是 训练过程中给模型传值时的如下语句: 而其中函数seq2embeded()中用到了tensorflow的运算: 这两句会增加graph节点,使得图在训练过程中不断增大,就会不断消耗内存。 教训: 训练过程中 ...
转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如 果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 ...
转载自http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 ...
参考博文:http://blog.csdn.net/u013078356/article/details/51154847 在使用caffe训练数据,迭代次数非常大的时候,难免会想图形化展示实验结果。这样即便于训练过程中参数的调整,也便于最后成果的展示。 0. 需要的文件: 1. ...