一. 逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型: 而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均 ...
一. 逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型: 而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均 ...
题目太长啦!文档下载【传送门】 第1题 简述:实现逻辑回归。 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客【传送门】。 运行结果: 第2题 简述:通过正规化实现逻辑回归。 运行结果: ...
1、逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率。比如f(x)>0.5的时候能够表示 ...
一、概述 1.1、概念 是一种名为“回归”的线性分类器,是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。 1.2、按预测标签的数据类型分 连续型变量:通过线性回归方程z,线性回归使用输入的特征矩阵 ...
---恢复内容开始--- Softmax Regression 可以看做是 LR 算法在多分类上的推广,即类标签 y 的取值大于或者等于 2。 假设数据样本集为:$\left \{ \left ( X^{(1)},y ^{(1)} \right ) ,\left ( X^{(2)},y ...
从今天起,我会在这里记录一下学习深度学习所留下的足迹,目的也很简单,手头有近3w个已经标记好正确值得验证码,想要从头训练出一个可以使用的模型, 虽然我也知道网上的相关模型和demo很多,但是还是非常希望自己可以亲手搞一个能用的出来,学习书籍主要是:李金洪老师的《深度学习之Tensorflow ...
【机器学习】算法原理详细推导与实现(二):逻辑回归 在上一篇算法中,线性回归实际上是 连续型 的结果,即 \(y\in R\) ,而逻辑回归的 \(y\) 是离散型,只能取两个值 \(y\in \{0,1\}\),这可以用来处理一些分类的问题。 logistic函数 我们可能会遇到一些分类 ...
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 Logistic回归虽然名字里带“回归”,但是它实际上 ...