摘要:本文就目标检测算法的基础知识进行简要综述,方便大家学习查看。 图片分类任务我们已经熟悉了,就是算法对其中的对象进行分类。而今天我们要了解构建神经网络的另一个问题,即目标检测问题。这意味着,我们不仅要用算法判断图片中是不是一辆汽车,还要在图片中标记出它的位置,用边框或红色方框把汽车 ...
. 目标检测和边界框 . . 边界框 . 锚框 目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框 ground truth bounding box 。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中心生成多个大小和宽高比 aspect ratio 不同的边界框。这些边界框被 ...
2020-02-23 23:11 0 1079 推荐指数:
摘要:本文就目标检测算法的基础知识进行简要综述,方便大家学习查看。 图片分类任务我们已经熟悉了,就是算法对其中的对象进行分类。而今天我们要了解构建神经网络的另一个问题,即目标检测问题。这意味着,我们不仅要用算法判断图片中是不是一辆汽车,还要在图片中标记出它的位置,用边框或红色方框把汽车 ...
图像分类、目标检测、分割是计算机视觉领域的三大任务。 目标检测的基本思路:同时解决定位(localization) + 识别(Recognition)。 多任务学习,带有两个输出分支。一个分支用于做图像分类,即全连接+softmax判断目标类别,和单纯图像分类区别 ...
Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到特定任务的数据集上fine-tuning可以得到较好的新能,也就是说用Imagenet上训练 ...
目标检测和边界框 在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测。 目标 ...
转自:《目标检测》-第2章-Backbone与Detection head 这里简单介绍以下目标检测网络构成的两个基础部分:Backbone 和 Detection head. 图一,目标检测网络的两个重要组成部分:backbone 和 detection head ...
目标识别(objec recognition)是指明一幅输入图像中包含哪类目标。其输入为一幅图像,输出是该图像中的目标属于哪个类别(class probability)。 目标检测(object detection)除了要告诉输入图像中包含哪类目标外,还要框出该目标的具体位置(bounding ...
2020-09-21 目标检测(Object Detection)和目标跟踪(Object Tracking)的区别 Object Recognition: which object is depicted in the image? input: an image ...
咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下。 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示。在图像中,可以基于图像坐标系使用多种方式 ...