原文:MATLAB神经网络(7) RBF网络的回归——非线性函数回归的实现

. 案例背景 . . RBF神经网络概述 径向基函数是多维空间插值的传统技术,RBF神经网络属于前向神经网络类型,网络的结构与多层前向网络类似,是一种三层的前向网络。第一层为输入层,由信号源结点组成 第二层为隐藏层,隐藏层节点数视所描述问题的需要而定,隐藏层中神经元的变换函数即径向基函数是对中心点径向对称且衰减的非负非线性函数,该函数是局部响应函数,而以前的前向网络变换函数都是全局响应的函数 第 ...

2020-02-23 12:28 0 1665 推荐指数:

查看详情

TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出。 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数。 我们假设 ...

Fri Dec 24 19:39:00 CST 2021 10 1937
RBF神经网络--Matlab newrbe函数

newrbe x->表示向量 1.这个形式的神经网络不需要训练, 2.net模型中会保存全部训练数据即矩阵 IW中,新输入的样本p-> 会跟IW矩阵中的每个样本计算距离, radbas(||dist||.* b->)后 形成a-> 所以向量a-> ...

Sat May 16 16:57:00 CST 2020 0 1254
MATLAB神经网络(3) 遗传算法优化BP神经网络——非线性函数拟合

3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法。 其基本要素包括:染色体编码方法、适应度函数、遗传操作和运行参数。 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 ...

Wed Feb 19 02:10:00 CST 2020 0 9123
MATLAB神经网络(2) BP神经网络非线性系统建模——非线性函数拟合

2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模。在这种情况下,可以建立BP神经网络表达这些非线性系统。该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统 ...

Tue Feb 18 06:33:00 CST 2020 0 3948
线性回归神经网络

背景:一直想要梳理一下自己对广义线性模型的认识及思考,所有就有了这篇随笔。 前提: 1、首先明确,介绍模型会按照模型的三要素来展开,即模型(模型的参数空间),策略(如何选择最优模型,一般指代价函数/损失函数),算法(模型学习参数的方法,包括最优化方法等) 2、因为介绍的模型都是线性模型 ...

Wed Mar 18 03:27:00 CST 2020 0 1671
一、线性回归---单层神经网络

1、简单介绍 线性回归模型为,其中w1和w2为对应特征x1、x2的权重,b为偏差。 用神经网络图表现线性回归模型如下,图中未展示权重和偏差: 输入层为x1、x2,输入层个数为2,在神经网络中输入层个数即为特征数。输出为o,输出层个数为1.,即为线性回归模型中的输出。由于输入层不参与计算 ...

Mon May 20 01:16:00 CST 2019 0 649
Pytorch实现神经网络模型求解线性回归

autograd 及Variable Autograd: 自动微分   autograd包是PyTorch中神经网络的核心, 它可以为基于tensor的的所有操作提供自动微分的功能, 这是一个逐个运行的框架, 意味着反向传播是根据你的代码来运行的, 并且每一次的迭代运行都可能不 ...

Tue Sep 15 08:43:00 CST 2020 0 443
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM