最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG16,查找一些资料后最终采用了google开源的mobileNetV2。这里对学习mobileNet系列的过程做一些总结。mobileNetV1是由google在2017年发布 ...
最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG ,查找一些资料后最终采用了google开源的mobileNetV 。这里对学习mobileNet系列的过程做一些总结。mobileNetV 是由google在 年发布的一个轻量级深度神经网络,其主要特点是采用深度可分离卷积替换了普通卷积, 年提出的mobileNetV 在V 的基础上引入 ...
2020-02-22 21:39 0 4944 推荐指数:
最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG16,查找一些资料后最终采用了google开源的mobileNetV2。这里对学习mobileNet系列的过程做一些总结。mobileNetV1是由google在2017年发布 ...
MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018. 谷歌公司 MobileNet V1 结构非常简单, 发明了 Depthwise 和 Pointwise 卷积,但是没有使用RestNet里 ...
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9410574.html 论文: MobileNetV2: Inverted Residuals and Linear Bottlenecks 网址: https://arxiv.org ...
本文的主要贡献点是一个构造了一个结构,称为the inverted residual with linear bottleneck。该结构与传统的residual block中维度先缩减后扩增相反,而 ...
feature map尺寸,就不需要加 shortcut 了。 创建 MobileNetV2 网络 ...
这篇文章在MobileNet v2的基础上提出了一个新型的轻量级网络结构MobileNet v3。其是用NAS与NetAdapt两个算法搜索出来的。这篇文章针对MobileNet v3给出了两个版本的实现MobileNetV3-Large和MobileNetV3-Small,分别应对资源消耗 ...
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识。 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络。该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution ...
Pytorch quantize 官方量化-VGG16 + MobileNetV2 Created by Hanyz@2021/1/27 code:https://github.com/Forggtensky/Quantize_Pytorch_Vgg16AndMobileNet ...