Abstract 研究了大规模三维点云的有效语义分割问题。 由于依赖昂贵的采样技术和繁重的预处理/后处理步骤,大多数现有方法只能在小规模的点云上进行训练和操作。 本文提出了RandLA-Net,一个高效和轻量级的神经体系结构,用于直接推断大规模点云的点语义。 方法的关键是使用 ...
针对目前点云分割存在速度慢 显存需求大的问题,该文提出以一种高效率学习的方法。从论文的结果来看,该文不仅在计算时间和计算资源上大幅缩减,分割效果也是达到甚至超过了SOTA。 采样 大规模点云处理的一个挑战在于如何快速且有效地进行采样,从而加速应用所需的时间和计算资源。针对这个问题,本文的一个贡献在于比对了现有方法的效率,结论是尽管最远点采样是最流行的作法,但是对于LiDAR数据,每一帧上万个点需 ...
2020-02-21 17:19 0 1310 推荐指数:
Abstract 研究了大规模三维点云的有效语义分割问题。 由于依赖昂贵的采样技术和繁重的预处理/后处理步骤,大多数现有方法只能在小规模的点云上进行训练和操作。 本文提出了RandLA-Net,一个高效和轻量级的神经体系结构,用于直接推断大规模点云的点语义。 方法的关键是使用 ...
论文地址:https://arxiv.org/abs/2105.15203 1 引言 文章提出了一种基于transformer的语义分割网络,不同于ViT模型,SegFormer使用一种分层特征表示的方法,每个transformer层的输出特征尺寸逐层递减,通过这种方式捕获不同尺度的特征信息 ...
Efficient Large-Scale Stereo Matching 解析 @(sinbad)[360sinbad@gmail.com] 这是一篇2010年ACCV的立体匹配方面的论文,该文提出的算法主要用于在双目立体视觉中进行快速高清晰度图像匹配。算法基本思想为:通过计算一些支持点组成 ...
MOOCCube是一个服务于MOOC相关研究的开源大规模数据仓库。和已有类似的教育资源数据库相比它的规模庞大,数据丰富且多样。其中的学生行为记录包括学习时长、学习次数、学习视频的区间等非常完善的学 ...
paper: ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation code: PyTorch Abstract ERFNet可以看作是对ResNet结构的又一改变,同时也是 ...
图森和CMU的合作工作。 论文链接[https://arxiv.org/abs/1702.08502](https://arxiv.org/abs/1702.08502) 主要提出DUC(dense upsampling convolution)和HDC(hybrid dilated ...
论文地址:https://arxiv.org/abs/2105.05633 1 引言 图像语义分割在单个图像块级别通常表现得比较模糊,文章提出了一种基于tansformer的语义分割模型,可以在网络传播过程中建模全局上下文信息。其网络结构是在ViT模型的基础上进行扩展,以适应语义分割任务 ...
paper: Object-Contextual Representations for Semantic Segmentation code: PyTorch Abstract OCR是MSRA和中科院的一篇语义分割工作,结合每一类的类别语义信息给每个像素加权,再和原始的pixel ...