1. 几种非线性激励函数(Activation Function) 神经网络中,正向计算时,激励函数对输入数据进行调整,反向梯度损失。梯度消失需要很多方式去进行规避。 1.1 Sigmoid函数 表达式为: y(x)=sigmoid(x)=11+e− ...
sigmoid和tanh是 饱和激活函数 ,而ReLU及其变体则是 非饱和激活函数 。使用 非饱和激活函数 的优势在于两点: 非饱和激活函数 能解决所谓的 梯度消失 问题。 能加快收敛速度。 sigmoid将实值输出压缩在 , 范围内 tanh函数将实值输出压缩在 , 的范围。 sigmoid函数在历史上曾非常常用,输出值范围为 , 之间的实数。但是现在它已经不太受欢迎了,实际中很少使用。原因如下 ...
2020-02-20 20:37 0 1259 推荐指数:
1. 几种非线性激励函数(Activation Function) 神经网络中,正向计算时,激励函数对输入数据进行调整,反向梯度损失。梯度消失需要很多方式去进行规避。 1.1 Sigmoid函数 表达式为: y(x)=sigmoid(x)=11+e− ...
1. 什么是激活函数 在神经网络中,我们经常可以看到对于某一个隐藏层的节点,该节点的激活值计算一般分为两步: (1)输入该节点的值为 $ x_1,x_2 $ 时,在进入这个隐藏节点后,会先进行一个线性变换,计算出值 $ z^{[1]} = w_1 x_1 + w_2 x_2 + b ...
[学习笔记] 根据上面的学习,我们已经知道,当我们接到客户的需求,让我们做识别,判断或者预测时,我们需要最终交付给客户我们的神经网络模型。其实我们千辛万苦训练出来的神经网络模型,就是从输入到输出的一个神秘未知函数映射。在大多数情况下,我们并不知道这个真正的函数是什么,我们只是尽量去拟合它。前面 ...
SELU激活函数: 其中: 原论文地址 ...
激活函数有什么用? 提到激活函数,最想问的一个问题肯定是它是干什么用的?激活函数的主要作用是提供网络的非线性表达建模能力,想象一下如果没有激活函数,那么神经网络只能表达线性映射,此刻即便是有再多的隐藏层,其整个网络和单层的神经网络都是等价的。因此正式由于激活函数的存在,深度 ...
一、激活函数 1.什么是激活函数 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。 2.为什么要有激活函数 如果不用激活函数,每一层的输出都是上一层的线性组合,从而导致整个神经网络的输出为神经网络输入的线性组合,无法逼近任意函数。 3. ...
目录 前言 Sigmoid型函数 logistic函数 tanh函数 ReLu相关函数 ReLU激活函数 LeakyReLU函数 PReLU函数 ELU函数 Softplus函数 ...
什么~为什么~哪些(RSST) 一、什么是激活函数 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function: 二、为什么要用激活函数 如果不用激励函数,每一层输出都是上层输入的线性函数 ...