原文:决策树算法的理解及实现

决策树算法的理解及实现 本文基本复制原文来源:http: www.cnblogs.com lliuye p .html,我个人认为已经非常详细了,所有理论基本来自周志华 机器学习 的决策树章节 我主要是将该博客提供的源码进行了实践与大量注解,以便读者更容易理解。而为了读者方便理解,我将注解提供在源码内。经过源码注解,我已将作者小错误 classCount 改成classCount value 。我 ...

2020-02-19 16:44 0 932 推荐指数:

查看详情

决策树算法理解和应用

算法理解,可以参考下面的算法伪代码(来源:数据挖掘概念与技术) 决策树算法需要解决关键问题 ...

Tue Aug 10 00:43:00 CST 2021 0 165
决策树算法原理及实现

(一)认识决策树 1、决策树分类原理   决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类和回归两种,分类对离散变量做决策树,回归对连续变量做决策树。   近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念 ...

Mon May 09 02:01:00 CST 2016 2 59829
决策树算法-Python实现

决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制的高度,叶子节点个数,信息增益等进行,使得边建立边剪枝 ...

Tue Jun 09 19:09:00 CST 2020 0 852
如何实现并应用决策树算法

本文对决策树算法进行简单的总结和梳理,并对著名的决策树算法ID3(Iterative Dichotomiser 迭代二分器)进行实现实现采用Python语言,一句老梗,“人生苦短,我用Python”,Python确实能够省很多语言方面的事,从而可以让我们专注于问题和解决问题的逻辑 ...

Mon Apr 25 07:28:00 CST 2016 5 4839
决策树算法

1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...

Thu Jul 18 06:42:00 CST 2019 0 414
决策树算法

算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
决策树算法

利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
决策树算法

###决策树基础概念 在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy (熵) 表示的是系统的凌乱程度,它是决策树决策依据,熵的概念来源于香侬的信息论。 ###决策树决策过程 选择分裂特征:根据某一指标(信息增益,信息增益比或基尼 ...

Sun Jan 15 22:49:00 CST 2017 0 7039
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM