最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG16,查找一些资料后最终采用了google开源的mobileNetV2。这里对学习mobileNet系列的过程做一些总结。mobileNetV1是由google在2017年 ...
最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG ,查找一些资料后最终采用了google开源的mobileNetV 。这里对学习mobileNet系列的过程做一些总结。mobileNetV 是由google在 年发布的一个轻量级深度神经网络,其主要特点是采用深度可分离卷积替换了普通卷积, 年提出的mobileNetV 在V 的基础上引入 ...
2020-02-16 22:33 2 2892 推荐指数:
最近在利用SSD检测物体时,由于实际项目要求,需要对模型进行轻量化,所以考虑利用轻量网络替换原本的骨架VGG16,查找一些资料后最终采用了google开源的mobileNetV2。这里对学习mobileNet系列的过程做一些总结。mobileNetV1是由google在2017年 ...
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9410540.html 论文: MobileNets: Efficient Convolutio ...
头文件: 可分离卷积部分的代码: MobileNetV1 网络 32×32×3 ==> 32×32×32 ==> 32×32×64 ==> 16×16×128 ==> 16×16×128 ==> 8×8×256 ==> 8×8×256 ...
MobileNet系列很重要的轻量级网络家族,出自谷歌,MobileNetV1使用深度可分离卷积来构建轻量级网络,MobileNetV2提出创新的inverted residual with linear bottleneck单元,虽然层数变多了,但是整体网络准确率和速度都有提升 ...
这篇文章在MobileNet v2的基础上提出了一个新型的轻量级网络结构MobileNet v3。其是用NAS与NetAdapt两个算法搜索出来的。这篇文章针对MobileNet v3给出了两个版本的实现MobileNetV3-Large和MobileNetV3-Small,分别应对资源消耗 ...
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识。 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络。该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution ...
因为放弃tensorflow超级久了,也不想再去用它,因为明明很简单用pytorch十几行作出的代码,tensorflow的版本完全看不懂,我这个菜鸡还是老老实实刨地吧。mobilenet的代码网上一大堆,我把我写的贴出来吧,论文简单易读,连我这种英语渣渣两天就看完了。 mobelnet的代码 ...
MobileNet系列之MobileNet_v1 MobileNet系列之MobileNet_v2 导言: 继MobileNet_v1和v2提出后,在2019年,MobileNet_v3在众人的期盼下出来了,MobileNet_v3论文提出了两个模型 ...