一、贝叶斯决策 贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,贝叶斯考虑如何基于这些概率和误判损失来选择最优的类别标记。 朴素贝叶斯分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。 1、条件概率 概率指的是某一 ...
三 贝叶斯网 贝叶斯网定义 贝叶斯网也称信念网,借助有向无环图 DAG 来刻画属性之间的依赖关系,使用条件概率表 CPT 来描述属性的联合概率分布。 贝叶斯网有效地表达了属性间地条件独立性。 举例: 给定父结点集,贝叶斯网假设每个属性与其非后裔属性独立,则属性间的联合概率分布定义为: 贝叶斯网三种基本连接方式 道德图 为了分析变量之间的条件独立性,采用有向分离的方法,将一个有向图变为无向图,这个图 ...
2020-02-16 18:22 0 1243 推荐指数:
一、贝叶斯决策 贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,贝叶斯考虑如何基于这些概率和误判损失来选择最优的类别标记。 朴素贝叶斯分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。 1、条件概率 概率指的是某一 ...
朴素贝叶斯分类 1.1、摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论 ...
把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。 贝叶斯网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model ,DAG),是一种概率图模型,根据概率图的拓扑结构,考察一组 ...
联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者。 边缘概率(又称先验概率)是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概 ...
绪论 贝叶斯学派的最基本的观点是:任一个未知量\(\theta\)都可看作一个随机变量,应该用一个概率分布去描述对\(\theta\)的未知状况。这个概率分布是在抽样前就有的关于\(\theta\)的先验信息的概率称述。 似然函数属于联合密度函数,综合了总体信息和样本信息 ...
一、 贝叶斯网络,由一个有向无环图(DAG)和条件概率表(CPT)组成。 贝叶斯网络通过一个有向无环图来表示一组随机变量跟它们的条件依赖关系。它通过条件概率分布来参数化。每一个结点都通过P(node|Pa(node))来参数化,Pa(node)表示网络中的父节点。 一个简单的贝叶斯 ...
PRML中,说到,概率图模型中, 有向图的典型代表是贝叶斯网络, 无向图模型的典型代表是马尔科夫随机场。 朴素贝叶斯其实是一种简单的贝叶斯网络。 Priors P(Y) and conditionals P(Xi|Y) for Naïve Bayes ...
一、什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。 它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。 贝叶斯推断 ...