1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在前一篇支持向量机 ...
支持向量机 Support Vector Machine 是由Vapnik等人于 年提出来的,之后随着统计理论的发展,支持向量机 SVM 也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。 一 间隔与支持向量 线性二分类问题 线性二分 ...
2020-02-15 19:57 0 1033 推荐指数:
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在前一篇支持向量机 ...
一、支持向量机(SVM) 支持向量机,是用于解决分类问题。为什么叫做支持向量机,后面的内容再做解释,这里先跳过。 在之前《逻辑回归》的文章中,我们讨论过,对于分类问题的解决,就是要找出一条能将数据划分开的边界。 对于不同的算法,其定义的边界可能是不同的,对于SVM算法,是如何定义其边界 ...
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在支持向量机 ...
本文原创如需转载请注明出处 阅读目录一.什么是函数间隔? 二.什么是几何间隔? 三.函数间隔与几何间隔的关系? 四.硬间隔最大化 五.学习的对偶算法 一.函数间隔 在图A,B,C三点,A离超平面是最远的,所以A被分类错误的可能性是最小的,相反C离超平面的距离是最近的,所以C ...
二、对偶问题 1、优化问题的类型 (1)无约束优化问题: 求解方法:求取函数f(x)的导数,然后令其为零,可以求得候选最优值,再在这些候选值中验证;如果是凸函数,可以保证是最优解。 (2)有等式约束的优化问题: 即把等式 ...
函数的推理及常用的核函数有哪些;第四部分是支持向量机的应用,按照机器学习实战的代码详细解读。 机器学 ...
一.简介 支持向量机(svm)的想法与前面介绍的感知机模型类似,找一个超平面将正负样本分开,但svm的想法要更深入了一步,它要求正负样本中离超平面最近的点的距离要尽可能的大,所以svm模型建模可以分为两个子问题: (1)分的对:怎么能让超平面将正负样本分的开; (2)分的好:怎么能让距离超平面 ...
一.简介 上一节介绍了硬间隔支持向量机,它可以在严格线性可分的数据集上工作的很好,但对于非严格线性可分的情况往往就表现很差了,比如: *** PS:请多试几次,生成含噪声点的数据*** 那怕仅含有一个异常点,对硬间隔支持向量机的训练影响就很大,我们希望它能具有一定 ...