原文:【Keras】减少过拟合的秘诀——Dropout正则化

摘要: Dropout正则化是最简单的神经网络正则化方法。阅读完本文,你就学会了在Keras框架中,如何将深度学习神经网络Dropout正则化添加到深度学习神经网络模型里。 Dropout正则化是最简单的神经网络正则化方法。其原理非常简单粗暴:任意丢弃神经网络层中的输入,该层可以是数据样本中的输入变量或来自先前层的激活。它能够模拟具有大量不同网络结构的神经网络,并且反过来使网络中的节点更具有鲁棒 ...

2020-02-15 10:37 0 1119 推荐指数:

查看详情

(四) Keras Dropout正则化的使用

视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 使用dropout是要改善过拟合,将训练和测试的准确率差距变小 训练集,测试集结果相比差距较大时,过拟合 ...

Wed Feb 27 04:43:00 CST 2019 0 5918
1-6 dropout 正则化

dropout 正则化Dropout Regularization) 除了L2正则化,还有一个非常实用的正则化方法——Dropout( 随机失活): 假设你在训练上图这样的神经网络,它存在过拟合,这就是 dropout 所要处理的,我们复制这个神经网络, dropout 会遍历网络 ...

Mon Sep 03 07:01:00 CST 2018 0 1582
1.6 dropout正则化

  除了L2正则化,还有一个非常实用的正则化方法----dropout(随机失活),下面介绍其工作原理。 假设你在训练下图左边的这样的神经网络,它存在过拟合情况,这就是dropout所要处理的。我们复制这个神经网络,dropout会遍历网络每一层,并设置一个消除神经网络中节点的概率 ...

Fri Apr 13 18:06:00 CST 2018 0 1014
正则化如何防止过拟合

在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外 ...

Fri Oct 12 02:43:00 CST 2018 1 1266
TensorFlow——dropout正则化的相关方法

1.dropout dropout是一种常用的手段,用来防止过拟合的,dropout的意思是在训练过程中每次都随机选择一部分节点不要去学习,减少神经元的数量来降低模型的复杂度,同时增加模型的泛化能力。虽然会使得学习速度降低,因而需要合理的设置保留的节点数量。 在TensorFlow中 ...

Mon Jun 03 04:25:00 CST 2019 0 788
拟合,过拟合正则化

,及如何改进系统复杂度,使其能够使其在准确拟合现有训练样例的情况下,尽可能准确预测新数据。 U ...

Mon Jun 12 19:18:00 CST 2017 0 2749
第十一节,全连接网络中的优化技巧-过拟合正则化,dropout、退化学习率等

随着科研人员在使用神经网络训练时不断的尝试,为我们留下了很多有用的技巧,合理的运用这些技巧可以使自己的模型得到更好的拟合效果。 一 利用异或数据集演示过拟合 全连接网络虽然在拟合问题上比较强大,但太强大的拟合效果也带来了其它的麻烦,这就是过拟合问题。 首先我们看一个例子,这次将原有的4个异 ...

Fri Apr 27 05:54:00 CST 2018 0 2929
防止或减轻过拟合的方式(一)——正则化

在进行模型搭建时常用的解决过拟合的方法有以下几种:   · 采用更多的数据   · 迫使模型的复杂度降低(减少层数、正则化)   · dropout(提高鲁棒性)   · 提早结束训练过程   · 数据增强 这里重点讲正则化(regularization) 假定对于一个二分类问题 ...

Sat Feb 01 23:52:00 CST 2020 1 175
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM