FashionMNIST数据集共70000个样本,60000个train,10000个test.共计10种类别. 通过如下方式下载. softmax从零实现 数据加载 初始化模型参数 模型定义 损失函数定义 优化器定义 训练 数据加载 初始化模型 ...
FashionMNIST数据集共70000个样本,60000个train,10000个test.共计10种类别. 通过如下方式下载. softmax从零实现 数据加载 初始化模型参数 模型定义 损失函数定义 优化器定义 训练 数据加载 初始化模型 ...
PyTorch provides 2 kinds of Softmax class. The one is applying softmax along a certain dimension. The other is do softmax on a spatial matrix sized ...
手动实现softmax回归 3.6.1 获取数据 3.6.2 初始化参数模型 输入的fashion_mnist数据是28$\times$28 = 784 个像素的图像,输出10个类别,单层神经网络输出层的个数为10,softmax的权重和偏差数量为 784$\times$10 ...
Softmax回归多分类网络(PyTorch实现) 虽然说深度学习的教程已经烂大街了,基础理论也比较容易掌握,但是真正让自己去实现的时候还是有一些坑。一方面教程不会涉及太多具体的工程问题,另一方面啃PyTorch的英文文档还是有点麻烦。记录一下,就当是作业报告了。 获取数据集 首先导入所需 ...
我的这篇博客: softmax手动实现 是从零实现softmax回归,以熟悉PyTorch和相关函数的定义。 现在利用PyTorch来实现softmax分类器, 加深印象。 数据加载 FashionMNIST数据集的使用可以参考我的上一篇博客 得到的 train_iter ...
前几节介绍的线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测 ...
一、交叉熵和softmax 交叉熵已经包括了softmax 二、理解 1、两者的相同之处: nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv2d和nn.functional.conv2d 都是进行卷积 ...
python代码实现 参考资料 https://blog.csdn.net/qian99/article/details/78046329 《深度学习入门:基于Python的理论与实现》 ...