原文:tensorflow识别Mnist时,训练集与验证集精度acc高,但是测试集精度低的比较隐蔽的原因

tensorflow识别Mnist时,训练集与验证集精度acc高,但是测试集精度低的比较隐蔽的原因除了网上说的主要原因https: blog.csdn.net wangdong article details 之外,还有一种是比较隐蔽的原因 可能对于大多数人不会犯这种低级错误 ,作为新手的我找了半天才找到,原因是在程序中创建了一个会话之后又重新创建了一个会话,代码程序见我博客https: www. ...

2020-02-13 16:21 0 2317 推荐指数:

查看详情

测试精度大于训练精度

/higher-validation-accuracy-than-training-accurracy-using-tensorflow-and-keras       https://www.quora.com/H ...

Thu Jul 15 03:59:00 CST 2021 0 133
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Thu Jul 19 01:39:00 CST 2018 0 11208
验证测试训练

这三个名词在机器学习领域的文章中极其常见,但很多人对他们的概念并不是特别清楚,尤其是后两个经常被人混用。 Ripley, B.D(1996)在他的经典专著P ...

Mon Jul 29 01:21:00 CST 2013 0 5271
训练验证测试比例

当数据量比较小时,可以使用 7 :3 训练数据和测试数据,或者 6:2 : 2 训练数据,验证数据和测试数据。 (西瓜书中描述常见的做法是将大约 2/3 ~ 4/5 的样本数据用于训练,剩余样本用于测试) 当数据量非常大,可以使用 98 : 1 : 1 训练数据,验证数据和测试 ...

Mon Jul 01 19:23:00 CST 2019 0 6078
训练验证测试区别

我们在进行模型评估和选择的时候,先将数据随机分为训练验证测试,然后用训练训练模型,用验证验证模型,根据情况不断调整模型,选择其中最好的模型,再用训练测试训练模型得到一个最好的模型,最后用测试评估最终的模型。 训练 训练是用于模型拟合数据样本。 验证 ...

Thu Mar 03 04:33:00 CST 2022 0 1643
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Sat Oct 12 19:46:00 CST 2019 0 325
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM