逻辑回归 logistic regression 逻辑回归是线性的二分类模型 (与线性回归的区别:线性回归是回归问题,而逻辑回归是线性回归+激活函数sigmoid=分类问题) 模型表达式: f(x)称为sigmoid函数,也称为logistic函数,能将所有值映射到[0,1]区间 ...
完整代码: 在我运行代码是,出现过以下报错: IndexError: invalid index of a dim tensor. Use tensor.item to convert a dim tensor to a Python 这是因为我的pytorch版本比较高,将代码plt.text . , , Loss . f loss.data , fontdict size : , color ...
2020-02-10 13:54 0 1719 推荐指数:
逻辑回归 logistic regression 逻辑回归是线性的二分类模型 (与线性回归的区别:线性回归是回归问题,而逻辑回归是线性回归+激活函数sigmoid=分类问题) 模型表达式: f(x)称为sigmoid函数,也称为logistic函数,能将所有值映射到[0,1]区间 ...
最后结果: 代码来自于《深度学习框架PyTorch:入门与实践》,环境为PyTorch1.0 + Jupyter ...
FashionMNIST数据集共70000个样本,60000个train,10000个test.共计10种类别. 通过如下方式下载. softmax从零实现 数据加载 初始化模型参数 模型定义 损失函数定义 优化器定义 训练 数据加载 初始化模型 ...
手动实现softmax回归 3.6.1 获取数据 3.6.2 初始化参数模型 输入的fashion_mnist数据是28$\times$28 = 784 个像素的图像,输出10个类别,单层神经网络输出层的个数为10,softmax的权重和偏差数量为 784$\times$10 ...
1. 线性回归 1.1 线性模型 当输入包含d个特征,预测结果表示为: 记x为样本的特征向量,w为权重向量,上式可表示为: 对于含有n个样本的数据集,可用X来表示n个样本的特征集合,其中行代表样本,列代表特征,那么预测值可用矩阵乘法表 ...
Softmax回归多分类网络(PyTorch实现) 虽然说深度学习的教程已经烂大街了,基础理论也比较容易掌握,但是真正让自己去实现的时候还是有一些坑。一方面教程不会涉及太多具体的工程问题,另一方面啃PyTorch的英文文档还是有点麻烦。记录一下,就当是作业报告了。 获取数据集 首先导入所需 ...
Pytorch 实现简单线性回归 问题描述: 使用 pytorch 实现一个简单的线性回归。 受教育年薪与收入数据集 单变量线性回归 单变量线性 ...
第一步: 进行特征的可视化操作 第二步: 对非数字的特征进行独热编码,使用温度的真实值作为标签,去除真实值的特征作为输入特征,同时使用process进行标准化操作 ...