概述: UniLM是微软研究院在Bert的基础上,最新产出的预训练语言模型,被称为统一预训练语言模型。它可以完成单向、序列到序列和双向预测任务,可以说是结合了AR和AE两种语言模型的优点,Unilm在抽象摘要、生成式问题回答和语言生成数据集的抽样领域取得了最优秀的成绩。 一、AR与AE ...
摘要:预训练语言模型如BERT等已经极大地提高了多项自然处理任务的性能,然而预训练语言模型通常具需要很大计算资源,所以其很难在有限的资源设备上运行。为了加速推理 减小模型的尺寸而同时保留精度,首先提出了一个新颖的迁移蒸馏方法,它是一种基于迁移方法的知识蒸馏思路。利用整个新颖的KD方法,大量的知识编码在一个大的 老师 BERT可以很好地被迁移到一个小的 学生 TinyBERT模型那里。我们引入一个 ...
2020-02-05 16:42 0 1055 推荐指数:
概述: UniLM是微软研究院在Bert的基础上,最新产出的预训练语言模型,被称为统一预训练语言模型。它可以完成单向、序列到序列和双向预测任务,可以说是结合了AR和AE两种语言模型的优点,Unilm在抽象摘要、生成式问题回答和语言生成数据集的抽样领域取得了最优秀的成绩。 一、AR与AE ...
参考:NLP重铸篇之对抗文本攻击 [ 论文源码: github ] 作者提出了一种对抗样本生成算法TEXTFOOLER。 论文中,作者使用这种方法,对文本分类与文本蕴含两种任务做了测试,成功的攻击了这两种任务的相关模型,包括:BERT,CNN,LSTM,ESIM等等。 问题定义 ...
目录 研究背景 论文思路 实现方式细节 实验结果 附件 专业术语列表 一、研究背景 1.1 涉及领域,前人工作等 本文主要涉及NLP的一种语言模型,之前已经 ...
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 摘要 我们引入了一个新的叫做bert的语言表示模型,它用transformer的双向编码器表示。与最近的语言表示模型不同,BERT ...
摘要: 提出了一个新的语言表示模型(language representation), BERT: Bidirectional Encoder Representations from Transformers。不同于以往提出的语言表示模型,它在每一层的每个位置都能利用其左右两侧的信息用于学习 ...
参考:机器之心 论文:Pre-trained Models for Natural Language Processing: A Survey 首先简要介绍了语言表示学习及相关研究进展; 其次从四个方面对现有 PTM (Pre-trained Model) 进行系统分类 ...
论文地址: https://hal.inria.fr/hal-02131630/document 作者 : Ganesh Jawahar, Benoît Sagot, Djamé Seddah 机构 : Inria 研究的问题: 探究BERT的深层次表征学习的论文,也就是通过实验研究 ...
本文介绍的是斯坦福自然语言处理工具的升级版:Stanza,在v1.0.0之前,这个工具被称为StanfordNLP。 2021年了,今天想使用斯坦福自然语言处理工具发现人家升级了,不用安装JDK了, ...