一、动量的诞生 1967年,Levy发表《Relative Strength as a Criterion for Investment Selection》认为购买历史上最强势的股票的利润高于随机选择的股票。而与此同时,在20世纪60、70年代,EMH在芝加哥大学诞生和完善,根据半强型EMH ...
一 短期动量 长期动量和中期动量 衡量动量最简单的方法是计算某支股票在某个特定回溯期内的总回报 包括股息等再投资 。而根据回溯期的不同,学术研究一般分为短期动量 最多一个月 长期动量 如 年 个月的回溯期 和中期动量 如 个月的回溯期,是我们探讨的重点 。 短期动量与短期反转效应:Bruce Lehman在 Fads,Martingales,and Market Efficiency 中以 年的样 ...
2020-02-04 11:33 0 919 推荐指数:
一、动量的诞生 1967年,Levy发表《Relative Strength as a Criterion for Investment Selection》认为购买历史上最强势的股票的利润高于随机选择的股票。而与此同时,在20世纪60、70年代,EMH在芝加哥大学诞生和完善,根据半强型EMH ...
引入动量(Momentum)方法一方面是为了解决“峡谷”和“鞍点”问题;一方面也可以用于SGD 加速,特别是针对高曲率、小幅但是方向一致的梯度。 如果把原始的 SGD 想象成一个纸团在重力作用向下滚动,由于质量小受到山壁弹力的干扰大,导致来回震荡;或者在鞍点处因为质量小速度很快 ...
批梯度下降: 1)采用所有数据来梯度下降,在样本量很大的时,学习速度较慢,因为处理完全部数据,我们仅执行了一次参数的更新。 2)在学习过程中,我们会陷入损失函数的局部最小值,而永远 ...
Momentum方法可以说是对SGD的进一步优化,细节可以参考这里 这里用python对其进行简单实现,如下: 同样的收敛条件,速度确实比MBGD要快,用的次数更少 结果: ...
转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的。 2.加速学习 3.一般将参数设为 ...
其实应该叫做指数加权平均梯度下降法。 ...
动量法的结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的。 2.加速学习 3.一般将参数设为0.5,0.9,或者0.99,分别表示最大速度2倍,10倍,100倍于SGD的算法。 4.通过速度v,来积累了之间梯度指数级 ...
这是对之前的Momentum的一种改进,大概思路就是,先对参数进行估计,然后使用估计后的参数来计算误差 具体实现: 需要:学习速率 ϵ, 初始参数 θ, 初始速率v, 动量衰减参数α每步迭代过程: ...