朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其“朴素”假设是:给定类别变量的每一对特征之间条件独立。贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向量\(x_1\)至\(x_n\): \(P(y \mid x_1, \dots, x_n) = \frac{P(y ...
朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其“朴素”假设是:给定类别变量的每一对特征之间条件独立。贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向量\(x_1\)至\(x_n\): \(P(y \mid x_1, \dots, x_n) = \frac{P(y ...
朴素贝叶斯是一个很不错的分类器,在使用朴素贝叶斯分类器划分邮件有关于朴素贝叶斯的简单介绍。 若一个样本有n个特征,分别用x1,x2,...,xn表示,将其划分到类yk的可能性P(yk|x1,x2,...,xn)为: P(yk|x1,x2,...,xn)=P(yk)∏ni=1P(xi|yk ...
1文本分类过程 例如文档:Good good study Day day up可以用一个文本特征向量来表示,x=(Good, good, study, Day, day , up)。在文本分类中,假设我们有一个文档d∈X,类别c又称为标签。我们把一堆打了标签的文档集合<d,c> ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
朴素贝叶斯模型 朴素贝叶斯的应用 朴素贝叶斯模型是文本领域永恒的经典,广泛应用在各类文本分析的任务上。只要遇到了文本分类问题,第一个需要想到的方法就是朴素贝叶斯,它在文本分类任务上是一个非常靠谱的基准(baseline)。 比如对于垃圾邮件的分类,朴素贝叶斯 ...
一、算法说明 为了便于计算类条件概率\(P(x|c)\),朴素贝叶斯算法作了一个关键的假设:对已知类别,假设所有属性相互独立。 当使用训练完的特征向量对新样本进行测试时,由于概率是多个很小的相乘所得,可能会出现下溢出,故对乘积取自然对数解决这个问题。 在大多数朴素贝叶斯分类器中计 ...