原文:算法学习笔记——梯度下降法原理及其代码实现

梯度下降法原理以及代码实现 本篇博客承接本人上一篇关于逐步回归算法的引申,本篇将开始整理梯度下降算法的相关知识。梯度下降,gradient descent 之后将简称GD ,是一种通过迭代找最优的方式一步步找到损失函数最小值的算法,基本算法思路可总结为如下几点: 随机设置一个初始值 计算损失函数的梯度 设置步长,步长的长短将会决定梯度下降的速度和准确度,之后会详细展开 将初值减去步长乘以梯度,更新 ...

2020-01-22 14:52 0 2424 推荐指数:

查看详情

《机器学习(周志华)》笔记--线性模型(4)--梯度解释、梯度下降法算法思想、算法原理算法流程、代码实现

四、逻辑回归 5、梯度下降法 (1)梯度解释   偏导数:简单来说是对于一个多元函数,选定一个自变量并让其他自变量保持不变,只考察因变量与选定自变量的变化关系。   梯度梯度的本意是一个向量,由函数对每个参数的偏导组成,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处 ...

Sat Feb 01 19:46:00 CST 2020 0 908
CNN学习笔记梯度下降法

CNN学习笔记梯度下降法 梯度下降法   梯度下降法用于找到使损失函数尽可能小的w和b,如下图所示,J(w,b)损失函数是一个在水平轴w和b上面的曲面,曲面的高度表示了损失函数在某一个点的值       ...

Thu Feb 07 19:29:00 CST 2019 0 1074
回归与梯度下降法实现原理

回归与梯度下降 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归 ...

Thu Mar 22 06:01:00 CST 2018 8 3792
梯度下降法原理与python实现

梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程 ...

Thu Feb 14 01:15:00 CST 2019 0 1127
线性回归与梯度下降法[一]——原理实现

看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...

Tue Dec 13 00:23:00 CST 2016 5 11092
梯度下降法及其实现

本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比是一个下山的过程。可以假设一个场景:一个人上山旅游,天黑了,需要下山(到达山谷 ...

Sat Jul 13 01:56:00 CST 2019 0 1506
算法学习笔记——感知机原理及其代码实现

感知机原理代码实现 上篇讲完梯度下降,这篇博客我们就来好好整理一下一个非常重要的二分类算法——感知机,这是一种二分类模型,当输入一系列的数据后,输出的是一个二分类变量,如0或1 1. 算法原理 1.1 知识引入 说起分类算法,博主想到的另一个算法是逻辑回归,而感知机从原理上来说和回归 ...

Sat Feb 22 08:36:00 CST 2020 0 766
梯度下降法原理及小结

  在机器学习的核心内容就是把数据喂给一个人工设计的模型,然后让模型自动的“学习”,从而优化模型自身的各种参数,最终使得在某一组参数下该模型能够最佳的匹配该学习任务。那么这个“学习”的过程就是机器学习算法的关键。梯度下降法就是实现该“学习”过程的一种最常见的方式,尤其是在深度学习(神经网络)模型中 ...

Thu Dec 24 07:31:00 CST 2020 0 1465
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM