狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
之前学莫比乌斯反演的时候就被莫比乌斯函数震惊了,从 f x sum limits d n g d 反演出 g n sum limits d n mu d times f frac n d ,给出了谜一般的 mu x 函数的定义,令人百思不得其解,感觉定义出莫比乌斯函数的人似乎对容斥原理有了高深的造诣。这里从狄利克雷卷积 Dirichlet 卷积 出发,可以很自然地导出莫比乌斯函数,并得到莫比乌斯 ...
2020-01-13 22:09 0 209 推荐指数:
狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
狄利克雷卷积&莫比乌斯反演总结 Prepare 1、\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\)。 2、\(a|b\)指\(b\)被\(a\)整除。 3、一些奇怪常见的函数: \(1(n)=1\) \(id(n)=n\) \(\sigma ...
狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh。 卷积: “(n)”表示到n的一个范围。 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算\(f\ast g\)定义为 \[(f\ast g)(n) = \sum_ ...
数论入门1 一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\)。 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数。 性质 ...
数论函数 陪域:包含值域的任意集合 数论函数:定义域为正整数,陪域为复数的函数 积性函数:对于函数$f(n)$,若存在任意互质的数$a,b$,使得$a*b=n$,并且$f(n)=f(a)*f(b)$,那么函数$f(n)$被称为积性函数 常见积性函数: $1(i)=1$ $f(i)=i ...
1.基本概念 约翰·彼得·古斯塔夫·勒热纳·狄利克雷(1805-1859),德国数学家,创立了现代函数的正式定义。 狄利克雷提出了一个非常古怪的函数,叫做狄利克雷函数,专门有个符号D(X)来表示: 特点: 狄利克雷函数,因为无理数、有理数的混杂,所以函数值也是 ...
1、积性函数:对于函数$f(n)$,若满足对任意互质的数字a,b,a*b=n且$f(n)=f(a)f(b)$,那么称函数f为积性函数。显然f(1)=1。 2、狄利克雷卷积:对于函数f,g,定义它们的卷积为$(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})$。 3、两个积性 ...
听起来很 nb,很有名但比较难学的一个算法类型。然而确实很 nb。 我竟然在学 ymx 一年半前就学过的东西。 1. 反演的本质与第一反演公式 1.1. 什么是反演 反演是通过用 \(f\) ...