今天我们会来聊聊用神经网络如何进行非监督形式的学习. 也就是 autoencoder, 自编码. 压缩与解压 有一个神经网络, 它在做的事情是 接收一张图片, 然后 给它打码, 最后 再从打码后的图片中还原. 太抽象啦? 行, 我们再具体点. 假设刚刚那个神经网络是这样, 对应上刚刚 ...
自编码 Autoencoder 介绍 Autoencoder是一种无监督的学习算法,将输入信息进行压缩,提取出数据中最具代表性的信息。其目的是在保证重要特征不丢失的情况下,降低输入信息的维度,减小神经网络的处理负担。简单来说就是提取输入信息的特征。类似于主成分分析 Principal Components Analysis,PAC 对于输入信息X,通过神经网络对其进行压缩,提取出数据的重要特征,然 ...
2020-01-06 18:17 0 4249 推荐指数:
今天我们会来聊聊用神经网络如何进行非监督形式的学习. 也就是 autoencoder, 自编码. 压缩与解压 有一个神经网络, 它在做的事情是 接收一张图片, 然后 给它打码, 最后 再从打码后的图片中还原. 太抽象啦? 行, 我们再具体点. 假设刚刚那个神经网络是这样, 对应上刚刚 ...
Pytorch中的自编码(autoencoder) 本文资料来源:https://www.bilibili.com/video/av15997678/?p=25 什么是自编码 先压缩原数据、提取出最有代表性的信息。然后处理后再进行解压。减少处理压力 通过对比白色X和黑色X的区别(cost ...
一、自编码器:降维【无监督学习】 PCA简介:【线性】原矩阵乘以过渡矩阵W得到新的矩阵,原矩阵和新矩阵是同样的东西,只是通过W换基。 自编码: 自动编码器是一种无监督的神经网络模型,它可以学习到输入数据的隐含特征,这称为编码(coding),同时用学习到的新特征可以重构出原始输入 ...
自监督模型 训练一个ae的encoder,就能把code和object对应起来,获得code。给定一个code,decoder就能输出对应的object。 Autoencoder存在什么问题? 因为作为训练数据的object是有限的,导致decoder ...
原文链接:http://www.one2know.cn/keras7/ Autoencoder 自编码 压缩与解压 原来有时神经网络要接受大量的输入信息, 比如输入信息是高清图片时, 输入信息量可能达到上千万, 让神经网络直接从上千万个信息源中学习是一件很吃力的工作. 所以, 何不压缩 ...
https://blog.csdn.net/qq_27825451/article/details/84968890 一、从生成模型开始谈起1、什么是生成模型? 概率统计层面:能够在给丁某一些隐含参数的条件下,随机生成观测数据的这样一种模型,称之为“生成模型”。它给观测值和比周数据系列制定一个 ...
原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一、什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法,其中数据的压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。在大部分提到 ...
。ELMO尽管看上去利用了上文,也利用了下文,但是本质上仍然是自回归LM,这个跟模型具体怎么实现有关系。 ...