原文:推荐系统之矩阵分解(MF)

一 矩阵分解 .案例 我们都熟知在一些软件中常常有评分系统,但并不是所有的用户user人都会对项目item进行评分,因此评分系统所收集到的用户评分信息必然是不完整的矩阵。那如何跟据这个不完整矩阵中已有的评分来预测未知评分呢。使用矩阵分解的思想很好地解决了这一问题。 假如我们现在有一个用户 项目的评分矩阵R n,m 是n行m列的矩阵,n表示user个数,m行表示item的个数 那么,如何根据目前的矩 ...

2020-01-06 13:00 0 2241 推荐指数:

查看详情

基于矩阵分解(MF,Matrix Factorization)的推荐算法

LFM LFM即隐因子模型,我们可以把隐因子理解为主题模型中的主题、HMM中的隐藏变量。比如一个用户喜欢《推荐系统实践》这本书,背后的原因可能是该用户喜欢推荐系统、或者是喜欢数据挖掘、亦或者是喜欢作者项亮本人等等,假如真的是由于这3个原因导致的,那如果项亮出了另外一本数据挖掘方面的书 ...

Mon May 23 08:42:00 CST 2016 5 17447
基于矩阵分解推荐系统

简介 推荐方式 根据流行程度 根据个人特征 根据协同过滤 实现步骤 step 1: 需要根据用户购买的东西和商品对应建一个矩阵:(列为商品,横为用户) 问题:一个人可能会购买多件商品这样会产生计算误差。 这时需要对矩阵进行 ...

Sun Nov 05 04:54:00 CST 2017 0 1362
基于矩阵分解推荐系统实例

使用MATLAB尝试了随机梯度下降的矩阵分解方法,实现了一个比较简单的推荐系统的原理。 常用推荐系统的方法有协同过滤, 基于物品内容过滤等等。 这次是用的矩阵分解模型属于协同过滤的一种方法,大致原理是通过一定数量的因子来描述各个用户的喜好和各个物品的属性。 通过随机梯度下降法分解 ...

Thu Jun 19 05:28:00 CST 2014 2 5331
推荐系统的各个矩阵分解模型

# 推荐系统的各个矩阵分解模型 ## 1. SVD 当然提到矩阵分解,人们首先想到的是数学中经典的SVD(奇异值)分解,直接上公式:$$M_{m \times n}=U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{T}$$ - 原理 ...

Tue Sep 24 08:17:00 CST 2019 0 522
推荐系统矩阵分解方法

推荐系统的评分预测场景可看做是一个矩阵补全的游戏,矩阵补全是推荐系统的任务,矩阵分解(Matrix Factorization)是其达到目的的手段。因此,矩阵分解是为了更好的完成矩阵补全任务(欲其补全,先其分解之)。之所以可以利用矩阵分解来完成矩阵补全的操作,那是因为基于这样的假设:假设UI矩阵 ...

Tue Apr 16 22:17:00 CST 2019 0 721
推荐系统矩阵分解与邻域的融合模型

推荐系统通常分析过去的事务以建立用户和产品之间的联系,这种方法叫做协同过滤。 协同过滤有两种形式:隐语义模型(LFM),基于邻域的模型(Neighborhood models)。 本篇文章大部分内容为大神Koren的Factorization Meets the Neighborhood ...

Wed Sep 05 04:01:00 CST 2018 0 1218
再谈矩阵分解推荐系统中的应用

     本文将简单介绍下最近学习到的矩阵分解方法。   (1)PureSvd   矩阵分解的核心是将一个非常稀疏的评分矩阵分解为两个矩阵,一个表示user的特性,一个表示item的特性,将两个矩阵中各取一行和一列向量做内积就可以得到对应评分。   那么如何将一个矩阵分解为两个矩阵就是唯一 ...

Thu Oct 15 18:49:00 CST 2015 0 4436
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM