ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益。 假设我们有一个样本集,里面每个样本都有自己的分类结果。 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度。 即熵值越大,不确定性也越大。 不确定性计算公式 假设样本集中有多种分类 ...
html font family: sans serif ms text size adjust: webkit text size adjust: body margin: article, aside, details, figcaption, figure, footer, header, hgroup, main, menu, nav, section, summary display: ...
2020-01-06 14:54 0 2000 推荐指数:
ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益。 假设我们有一个样本集,里面每个样本都有自己的分类结果。 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度。 即熵值越大,不确定性也越大。 不确定性计算公式 假设样本集中有多种分类 ...
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解决策树): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanlan.zhihu.com/p/29980400 3.https://github.com ...
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点。 决策树:是一种基本的分类和回归方法。在分类问题中,是基于特征对实例进行分类。既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布。 决策树模型:决策树由结点 ...
ensemble 的基础,值得好好理解。一般而言一棵“完全生长”的决策树包含,特征选择、决策树构建、剪 ...
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器。决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规则进行递归(可以理解为嵌套的 if - else 的条件判断过程),关于递归的终止条件有三种 ...
决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林。 1. 决策树ID3算法的信息论基础 1970年昆兰找到了用信息论中的熵来度量决策树的决策选择过程,昆兰把这个算法叫做 ...
决策树是一种基本的分类与回归方法。分类决策树是一种描述对实例进行分类的树形结构,决策树由结点和有向边组成。结点由两种类型,内部结点表示一个特征或属性,叶结点表示一个类。 1. 基础知识 熵 在信息学和概率统计中,熵(entropy)是表示随机变量不确定性的度量。设\(X\)是一个取有限个值得 ...