上次去深圳招行面试。被问到了这个。中间讨论了几个关于贝叶斯的问题。可能我并不偏向知识图谱。然后就没有下文了。 结合李航的《统计学》和几篇博客,还有在凤凰网某位仁兄贡献新闻分类的源码。给自己复习一下。 为什么叫朴素贝叶斯和大学课本里的贝叶斯有什么不同? 朴素一词来源于==>假设 ...
白话解析 深入浅出朴素贝叶斯模型原理及应用 x 摘要 朴素贝叶斯模型是机器学习中经常提到的概念。但是相信很多朋友都是知其然而不知其所以然。本文将尽量使用易懂的方式介绍朴素贝叶斯模型原理,并且通过具体应用场景和源码来帮助大家深入理解这个概念。 x IT相关概念 . 分类问题 已知m个样本 x ,y , ...... xm,ym ,x是特征变量,y是对应的类别。要求得一个模型函数或者映射规则h,对于 ...
2020-01-04 21:47 1 936 推荐指数:
上次去深圳招行面试。被问到了这个。中间讨论了几个关于贝叶斯的问题。可能我并不偏向知识图谱。然后就没有下文了。 结合李航的《统计学》和几篇博客,还有在凤凰网某位仁兄贡献新闻分类的源码。给自己复习一下。 为什么叫朴素贝叶斯和大学课本里的贝叶斯有什么不同? 朴素一词来源于==>假设 ...
朴素贝叶斯中的朴素是指特征条件独立假设, 贝叶斯是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...
1.使用朴素贝叶斯模型对iris数据集进行花分类 #高斯分布型 from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB gnb ...
[白话解析] 深入浅出最大熵模型 0x00 摘要 本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释最大熵模型。并且从名著中找了几个具体应用场景来帮助大家深入这个概念。 0x01 背景概念 1. 什么是熵? 熵这个概念可以从多个角度来理解 ...
前面已经介绍过朴素贝叶斯的原理,今天来介绍一下朴素贝叶斯的三个常用模型:多项式模型、伯努利模型和高斯模型。 多项式模型 该模型常用于文本分类,特征是单词,值是单词的出现次数。 在多项式模型中,设某文档d={t1,t2,...,tk},ti(i=1,2,...,k)为在该文档d中出现的单词 ...
朴素贝叶斯中的基本假设 训练数据是由$P\left( {X,Y} \right)$独立同分布产生的 条件独立假设(当类别确定时特征之间是相互独立的):\[P\left( {X = x|Y = {c_k}} \right) = P\left( {{X^{\left( 1 \right ...
我理解的朴素贝叶斯模型 我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴素贝叶斯模型的基础。 假设,你的xx公司正在面临着用户流失的压力 ...