根据推荐物品的元数据发现物品的相关性,再基于用户过去的喜好记录,为用户推荐相似的物品。 一、特征提取:抽取出来的对结果预测有用的信息 对物品的特征提取-打标签(tag) 用户自定义标签(UGC) 隐语义模型(LFG) 专家标签(PGC) 对文本信息的特征提取-关键词 ...
一 什么是信息流产品 当下,信息流 资讯 和短视频是唯一两个在用户领域保持好的增长事态的细分行业。像其他比较成熟的互联网细分行业,比如说移动社交,电商,OTO这个细分行业,用户已经饱和了,用户增长比较缓慢,而短视频以及信息流是一个很迅猛的用户增长的势头。 信息流产品是一个非常好的用作商业变现的产品形态。 . 信息流产品的特点 信息流产品 在合适的场景下,为用户提供合适的内容 适合手机屏幕,手指上 ...
2019-12-04 17:57 0 945 推荐指数:
根据推荐物品的元数据发现物品的相关性,再基于用户过去的喜好记录,为用户推荐相似的物品。 一、特征提取:抽取出来的对结果预测有用的信息 对物品的特征提取-打标签(tag) 用户自定义标签(UGC) 隐语义模型(LFG) 专家标签(PGC) 对文本信息的特征提取-关键词 ...
导语 | 看点信息流每天为亿级用户提供海量实时推荐服务,除了大并发/低延迟/高性能等传统架构挑战以外,还有哪些推荐系统特有的架构挑战难题,又是如何解决的?本文是对腾讯看点独立端推荐研发中心总监——彭默在云+社区沙龙online的分享整理,希望与大家一同交流。 点击视频查看完整直播回放 ...
Job1.java Job2.java Job3.java Job4.java ...
: 输出2:根据输入2和输出1,从电影数据集中给用户推荐用户没有看过的与用户相似度最高的k个电影。 前 ...
双塔模型是推荐、搜索、广告等多个领域的算法实现中最常用和经典的结构,实际各公司应用时,双塔结构中的每个塔会做结构升级,用CTR预估中的新网络结构替代全连接DNN,本期看到的是腾讯浏览器团队的推荐场景下,巧妙并联CTR模型应用于双塔的方案。 一图读懂全文 获取『推荐与广告』行业 ...
最近闲下来又开始继续折腾推荐系统了,声明一下,本文只是介绍一下最基础的基于内容的推荐系统(Content-based recommender system)的工作原理,其实基于内容的推荐系统也分三六九等Orz,这里只是简单的较少一下最原始的、最基本的工作流程。 基于内容的推荐算法思路很简单 ...
目录 1. 脚本语言+配置文件 脚本语言 配置文件 2. CWL/WDL 3.docker 先来看一则招聘信息: 关于生物信息流程,不同的分类标准可能得到不一样的分类结果,比如: A review ...
这篇文章我们主要关注的是基于内容的推荐算法,它也是非常通用的一类推荐算法,在工业界有大量的应用案例。 本文会从什么是基于内容的推荐算法、算法基本原理、应用场景、基于内容的推荐算法的优缺点、算法落地需要关注的点等5个方面来讲解。 希望读者读完可以掌握常用的基于内容的推荐算法的实现原理 ...