概括: 简而言之: validation set,是有标注,用于验证的 test set,是没有标注的 正文: 感谢! 在有监督的机器学习中,经常会说到训练集(train)、验证集(validation)和测试集(test),这三个集合的区分可能会让人糊涂,特别是,有些读者搞不清楚验证集 ...
验证集与测试集的区别 验证集 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。 测试集 用来评估模最终模型的泛化能力。但不能作为调参 选择特征等算法相关的选择的依据。 一个形象的比喻: 训练集 学生的课本 学生 根据课本里的内容来掌握知识。 验证集 作业,通过作业可以知道 不同学生学习情况 进步的速度快慢。 测试集 考试,考的题是平常都没有见过,考察学生 ...
2020-01-03 13:35 0 8138 推荐指数:
概括: 简而言之: validation set,是有标注,用于验证的 test set,是没有标注的 正文: 感谢! 在有监督的机器学习中,经常会说到训练集(train)、验证集(validation)和测试集(test),这三个集合的区分可能会让人糊涂,特别是,有些读者搞不清楚验证集 ...
训练集用于模型参数,测试集用于估计模型对样本的泛化误差,验证集用于“训练”模型的超参数。 我们知道一个机器学习模型通常包括两个部分的参数:模型参数和超参数。其中超参数是用于控制模型行为的超参数,这些参数不是通过模型本身学习而来的。例如多项式回归模型里面,多项式的次数,学习速率是超参数。这些超参数 ...
我们在进行模型评估和选择的时候,先将数据集随机分为训练集、验证集和测试集,然后用训练集训练模型,用验证集验证模型,根据情况不断调整模型,选择其中最好的模型,再用训练集和测试集训练模型得到一个最好的模型,最后用测试集评估最终的模型。 训练集 训练集是用于模型拟合数据样本。 验证 ...
使用随机森林算法时用到了交叉验证,突然陷入沉思,有测试集的情况下用交叉验证做什么?整理思路如下: 1、训练集,顾名思义,就是拿来训练模型的数据集,通过这个数据训练得到模型的参数; 2、验证集,可以用来做超参数的选取与模型的选取,在没有测试集的情况下也可以评价模型的性能。 3、测试集,用来评价 ...
最近在Udacity上学习Machine learning课程,对于验证集、测试集和训练集的相关概念有些模糊。故整理相关资料如下。 交叉检验(Cross Validation) 在数据分析中,有些算法需要利用现有的数据构建模型,比如贝叶斯分类器,决策树,线性回归等,这类算法统称为监督学习 ...
在NG的ML课程中和西瓜书中都有提到:最佳的数据分类情况是把数据集分为三部分,分别为:训练集(train set),验证集(validation set)和测试集(test set)。那么,验证集和测试集有什么区别呢? 实际上,两者的主要区别是:验证集用于进一步确定 ...
首先需要说明的是:训练集(training set)、验证集(validation set)和测试集(test set)本质上并无区别,都是把一个数据集分成三个部分而已,都是(feature, label)造型。尤其是训练集与验证集,更无本质区别。测试集可能会有一些区别,比如在一些权威计算机视觉 ...
这三个名词在机器学习领域的文章中极其常见,但很多人对他们的概念并不是特别清楚,尤其是后两个经常被人混用。 Ripley, B.D(1996)在他的经典专著P ...