上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别 ...
手写数字图片识别实战 通过sklearn的KNN邻近相似度,从而实战识别图片上的数字 .数据导入与处理 先随便展示一张图片 读取图片并保存在列表中 将列表形式的样本转换成数组形式: 将三维feature变成二维 样本数据进行打乱,但target,feature打乱顺序是相同的 .训练模型 创建模型并训练 .验证模型 .测试图片数字 让模型对外部的一张图片进行识别 将数字 裁剪出来 降维处理 对图片 ...
2020-01-01 21:48 0 1884 推荐指数:
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别 ...
一、准备工作 1.打开本链接,其中代码可以直接粘贴使用。 2.打开 anaconda prompt安装图像识别需要的库 3.将桌面的 mnist数据集拷贝到 Jupyter Notebook默认工作路径(我的文档)。 4.打开 ...
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下。不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个“hello word”程序----mnist手写数字识别 ...
此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接层输出10个分类的预测结果,然后计算损失,进行训练。 代码如下: ...
一、手写数字识别简介 手写数字识别是指给定一系列的手写数字图片以及对应的数字标签,构建模型进行学习,目标是对于一张新的手写数字图片能够自动识别出对应的数字。图像识别是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。机器学习领域一般将此类识别问题转化 ...
公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数据集是一个用于图像处理的数据集,这些数据描绘了 [0, 9] 的数字,我们可以用 ...
下载数据集 mnist数据集是一个公共的手写数字数据集,一共有7W张28*28像素点的0-9手写数字图片和标签,其中有6W张是训练集,1W张是测试集。 其中,x_train为训练集特征,y_train为训练集标签,x_test为测试集特征,y_test为测试集标签。 数据 ...
导入依赖 下载数据集 mnist数据集是一个公共的手写数字数据集,一共有7W张28*28像素点的0-9手写数字图片和标签,其中有6W张是训练集,1W张是测试集。 其中,x_train为训练集特征,y_train为训练集标签,x_test为测试集特征 ...