决策树(Decision Tree)是一种基本的分类与回归方法(ID3、C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归)。决策树在分类过程中,表示的是基于特征对实例进行划分,将其归到不同的类别。决策树的主要优点是模型可读、易于理解、分类速度快、建模与预测速度快。本文主要 ...
决策树 Decision Tree 本文学习内容来自西瓜书和机器学习导论。 什么是决策树 目的:产生一棵泛化能力强的决策树。泛化能力强指对非训练集的样本进行预测时仍能保持较高的准确性。 思想:分治 divide and conquer 算法 x ,y 表示第一个样本, x 为该样本在各个属性中值的集合 x ,x ...x n , y 指该样本的类别 好瓜or坏瓜 。 图中算法为递归算法,共有三处可 ...
2020-01-01 20:58 0 310 推荐指数:
决策树(Decision Tree)是一种基本的分类与回归方法(ID3、C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归)。决策树在分类过程中,表示的是基于特征对实例进行划分,将其归到不同的类别。决策树的主要优点是模型可读、易于理解、分类速度快、建模与预测速度快。本文主要 ...
1. 决策树(Decision Tree)-决策树原理 2. 决策树(Decision Tree)-ID3、C4.5、CART比较 1. 前言 上文决策树(Decision Tree)1-决策树原理介绍了决策树原理和算法,并且涉及了ID3,C4.5,CART3个决策树算法。现在大部分都是 ...
◆版权声明:本文出自胖喵~的博客,转载必须注明出处。 转载请注明出处:https://www.cnblogs.com/by-dream/p/10088976.html 前言 之前在测试建模分析中讲过决策树的概念,这里要说的机器学习的决策树在构建上和最终目的与之前的决策树是有一些 ...
决策树 ID3,C4.5,CART,决策树的生成,剪枝。 一、概述 决策树(decision tree)是一种基本的分类与回归方法(这里是分类的决策树)。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是 ...
0 通俗的理解 对于一个根据特征向量来对样本进行分类的问题,首先挑出一个最有价值的特征,对该特征进行提问,如样本颜色是什么;然后根据得到的不同回答,如红色、蓝色等,将数据集划分成子集 ...
前言 生活中有很多利用决策树的例子。西瓜书上给的例子是西瓜问题(讲到这突然想到书中不少西瓜的例子,难道这就是它西瓜封面的由来?)\。大致意思是,已经有一堆已知好瓜坏瓜的西瓜,每次挑取西瓜的一条属性,将西瓜进行分类。然后在分类的西瓜中,继续挑取下一条属性进行更加细致的划分,直到所有的属性被用完 ...
决策树是一种基本的分类和回归方法。本章主要讨论用于分类的决策树,决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数 ...
决策树是一种常见的机器学习模型。形象地说,决策树对应着我们直观上做决策的过程:经由一系列判断,得到最终决策。由此,我们引出决策树模型。 一、决策树的基本流程 决策树的跟节点包含全部样例,叶节点则对应决策结果。其它每个节点则对应一个属性测试,每个节点包含的样本集合根据属性测试结果被划分 ...