目录 MCMC(一)蒙特卡罗方法 https://www.cnblogs.com/emanlee/p/12356492.htmlMCMC(二)马尔科夫链 https://www.cnblogs.com/emanlee/p/12357341.htmlMCMC(三)MCMC采样和M-H采样 ...
吉布斯采样 Gibbs Sampling 首先选取概率向量的一个维度,给定其他维度的变量值当前维度的值,不断收敛来输出待估计的参数。具体地 .随机给每一篇文档的每一个词 ww,随机分配主题编号 zz .统计每个主题 zizi 下出现字 ww 的数量,以及每个文档 nn 中出现主题 zizi 中的词 ww的数量 .每次排除当前词 ww 的主题分布 zizi,根据其他所有词的主题分类,来估计当前词 w ...
2019-12-31 16:59 0 1191 推荐指数:
目录 MCMC(一)蒙特卡罗方法 https://www.cnblogs.com/emanlee/p/12356492.htmlMCMC(二)马尔科夫链 https://www.cnblogs.com/emanlee/p/12357341.htmlMCMC(三)MCMC采样和M-H采样 ...
几个可以学习gibbs sampling的方法1,读Bishop的Pattern Recognition and Machine Learning,讲的很清楚,但是我记得好像没有例子。2,读artif ...
一、引入 吉布斯采样也是用于高维空间的采样方法。 假设二维联合概率分布$\pi(x_{1},x_{2})$在二维空间里有两个点,分别是$A(x_{1}^{1},x_{2}^{1})$和$B(x_{1}^{1},x_{2}^{2})$,这两个点的第一个维度取值相同,放在直角坐标系上看,它们两 ...
为什么要用吉布斯采样 什么是sampling? sampling就是以一定的概率分布,看发生什么事件。举一个例子。甲只能E:吃饭、学习、打球,时间T:上午、下午、晚上,天气W:晴朗、刮风、下雨。现在要一个sample,这个sample可以是:打球+下午+晴朗。 吉布斯采样的通俗解释 ...
最近因为论文需要用到LDA方法,这个方法需要的数学知识比较多,查了些资料,根据自己的理解先从Gibbs Sampling开始。 1.什么是随机模拟(统计模拟,蒙特卡洛方法) 随机模拟的重要问题是给定一个概率分布p(x),在计算机中生成它的样本,比如利用计算机生成随机数 ...
吉布斯采样(Gibbs Sampling) 常用于DBM和DBN,吉布斯采样主要用在像LDA和其它模型参数的推断上。 要完成Gibbs抽样,需要知道条件概率。也就是说,gibbs采样是通过条件分布采样模拟联合分布,再通过模拟的联合分布直接推导出条件分布,以此循环。 概念解释 吉布斯采样 ...
GSDMM是一种基于狄利克雷多项式混合模型的收缩型吉布斯采样算法(a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model)的简称,它是发表在2014年KDD上的论文《A Dirichlet ...
将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。这种现象称为吉布斯效应 ...