原文:自编码器实现MNIST图片分类

自编码器结构:输入 gt 编码器 gt 嵌入 gt 解码器 gt 输出 输入数据经过编码压缩得到低维度向量,这个部分称为编码器,因为它产生了低维度嵌入或者编码。网络的第二部分不同于在前向神经网络中把嵌入映射为输出标签,而是把编码器逆化,重建原始输入,这个部分称为解码器。 自编码器是一种类似PCA的神经网络,它是无监督学习方法,目标输出就是其输入。 ...

2019-12-28 10:44 0 1684 推荐指数:

查看详情

自编码器】降噪自编码器实现

注意:代码源自[1][2] [1] 黄文坚.TensorFlow实战.北京:电子工业出版社 [2] https://blog.csdn.net/qq_37608890/arti ...

Tue Sep 17 05:33:00 CST 2019 0 1307
自编码器

引言 前面三篇文章介绍了变分推断(variational inference),这篇文章将要介绍变分自编码器,但是在介绍变分自编码器前,我们先来了解一下传统的自编码器自编码器 自编码器(autoencoder)属于无监督学习模型(unsupervised learning ...

Tue Jun 23 07:45:00 CST 2020 0 732
TensorFlow自编码器(AutoEncoder)之MNIST实践

自编码器可以用于降维,添加噪音学习也可以获得去噪的效果。 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数。 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所以这里对权重参数w做了一些限制 需要对数据标准化 学习率设置合理 ...

Mon Nov 18 01:37:00 CST 2019 3 358
自编码器

  神经网络就是一种特殊的自编码器,区别在于自编码器的输出和输入是相同的,是一个自监督的过程,通过训练自编码器,得到每一层中的权重参数,自然地我们就得到了输入x的不同的表示(每一层代表一种)这些就是特征,自动编码器就是一种尽可能复现原数据的神经网络。   “自编码”是一种 ...

Fri Sep 27 17:26:00 CST 2019 0 727
自编码器

自编码器论文的提出是为了神经网络权重更好的初始化,他将多层网络一层一层的通过自编码器确定初始权重,最终再对模型进行权重训练; 这种初始化权重的方式目前已经不是主流,但他的思路可以借鉴到很多场景; 模型简介 自编码器,AutoEncode,它分为两部分,前一部分是编码器,后一部分是解码 ...

Tue Feb 25 18:15:00 CST 2020 0 2070
自编码器实现与应用

是通过神经网络实现的。 自编码器特点: 1.自动编码是数据相关的,这意味着自动编码器只能压缩那些与 ...

Sat Oct 10 09:02:00 CST 2020 0 475
自编码器(autoencoder)

今天我们会来聊聊用神经网络如何进行非监督形式的学习. 也就是 autoencoder, 自编码. 压缩与解压 有一个神经网络, 它在做的事情是 接收一张图片, 然后 给它打码, 最后 再从打码后的图片中还原. 太抽象啦? 行, 我们再具体点. 假设刚刚那个神经网络是这样, 对应上刚刚 ...

Thu Jan 11 22:25:00 CST 2018 0 1358
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM