一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. 假如多个key对应的values,总共是90万 ...
本文首发于 vivo互联网技术 微信公众号 https: mp.weixin.qq.com s lqMu lfk Ny ZHYruEeBdA 作者简介:郑志彬,毕业于华南理工大学计算机科学与技术 双语班 。先后从事过电子商务 开放平台 移动浏览器 推荐广告和大数据 人工智能等相关开发和架构。目前在vivo智能平台中心从事 AI中台建设以及广告推荐业务。擅长各种业务形态的业务架构 平台化以及各种业 ...
2019-12-30 11:00 0 1364 推荐指数:
一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. 假如多个key对应的values,总共是90万 ...
在开发过程中大家都会遇到一个常见的问题,那就是数据倾斜。既然遇到问题,那么就应该想办法解决问题。解决问题首先要了解出现这个问题的原因。 什么是数据倾斜,比如说:在hive中 map阶段早就跑完了,reduce阶段一直卡在99%。很大情况是发生了数据倾斜,整个任务在等某个节点跑完 ...
计算完毕后要一直等待这个忙碌的节点,也拖累了整体的计算时间,可以说效率是十分低下的。 解决方案: ...
【使用场景】 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案。 【解决方案】 小表join大表转为小表broadcast+map大表实现。具体 ...
【使用场景】 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案。 【解决方案 ...
MapReduce简介MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义: 1)MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算 ...
数据倾斜问题剖析 数据倾斜是分布式系统不可避免的问题,任何分布式系统都有几率发生数据倾斜,但有些小伙伴在平时工作中感知不是很明显,这里要注意本篇文章的标题—“千亿级数据”,为什么说千亿级,因为如果一个任务的数据量只有几百万,它即使发生了数据倾斜,所有数据都跑到一台机器去执行,对于几百万的数据 ...
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培 ...