Introduction 本文主要提出了高效且容易实现的STA框架(Spatial-Temporal Attention)来解决大规模video Reid问题。框架中融合了一些创新元素:帧选取、判别力局部挖掘、不带参特征融合、视频内正则化项。 Proposed Method (1)总体 ...
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构 recurrent DNN architecture ,通过使用Siamese网络 孪生神经网络 ,并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示。 Method 特征提取架构: 第一层:卷积神经网络,提取每个行人的外貌特征向量 第二层:循环神经网络,让网络更好 ...
2019-12-24 11:09 0 799 推荐指数:
Introduction 本文主要提出了高效且容易实现的STA框架(Spatial-Temporal Attention)来解决大规模video Reid问题。框架中融合了一些创新元素:帧选取、判别力局部挖掘、不带参特征融合、视频内正则化项。 Proposed Method (1)总体 ...
Introduction (1)Motivation: 当前采用CNN-RNN模型解决行人重识别问题仅仅提取单一视频序列的特征表示,而没有把视频序列匹配间的影响考虑在内,即在比较不同人的时候,根据 ...
Introduction 为了提取两个特征之间的相关性,设计了Relation Module(RM)来计算相关性向量; 为了减小背景干扰,关注局部的信息区域,采用了Relation-Guided ...
本文提出的方法思想是利用属性信息来挖掘各个局部特征的权重,如下图所示。 网络框架如下图。框架对人体的六组属性进行了区分:性别&年龄、头部、上半身、下半身、鞋子、背包拎包等,具体见下表。通 ...
Introduction (1)Motivation: 解决跨模态reid的方法主要有两类:模态共享特征学习(modality-shared feature learning)、模态特定特征补偿( ...
Introduction (1)Motivation: 在匹配过程中,存在行人的不同图片语义信息不对齐、局部遮挡等现象,如下图: (2)Contribution: ① 提出了Spin ...
参考旷视研究院推文【传送门】 Introduction (1)Motivation: 遮挡行人重识别(Occluded Person ReID)更具有挑战性: ① 受到遮挡的影响,图像的判别信息更少,更容易匹配到错误的行人; ② 基于身体部位之间的特征信息做匹配虽然有效,但在被遮挡 ...
Introduction 本文主要解决RGB-IR跨模态匹配问题。贡献主要有三部分组成: ① 提出了 Hierarchical Cross-Modality Disentanglement(Hi- ...