原文:欧拉函数与欧拉定理

欧拉函数 varphi n or phi n 表示小于n的正整数与n互质的数的个数. 性质: 当n为质数时 varphi n n 当n为奇数时 varphi n varphi n 证明: because 欧拉函数为积性函数. therefore varphi n varphi ast varphi n because varphi therefore varphi n varphi n 欧拉函数是 ...

2020-07-04 08:24 2 81 推荐指数:

查看详情

函数|(扩展)定理|反演

也许更好的阅读体验 函数 定义 函数是 小于等于 x的数中与x 互质 的数的 数目 符号\(\varphi(x)\) 互质 两个互质的数的最大公因数等于1,1与任何数互质 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...

Sat Jun 29 23:52:00 CST 2019 7 1446
函数定理和费马小定理

对于正整数n,函数是小于等于n的正整数中与n互质的数的数目,表示为φ(n)。 性质1:对于素数p,φ(p)=p-1。 性质2:对于两个互质数p,q,φ(pq)=φ(p)*φ(q)=(p-1)(q-1)。(积性函数)(易证) 性质3:若n是质数p的k次幂,φ(n)=pk-pk-1=(p-1 ...

Wed Aug 02 07:51:00 CST 2017 0 1108
乘法逆元(函数,定理,质数筛法)

如果$ax{\equiv}1(mod\,p)$,且a与p互质(gcd(a,p)=1),则称a关于模p的乘法逆元为x。(不互质则乘法逆元不存在) 有一个问题,在求解过程中有除法,答案很大,要求最终答案 ...

Sat Nov 04 06:16:00 CST 2017 0 1100
数论之定理

本文介绍[初等]数论、群的基本概念,并引入几条重要定理,最后籍着这些知识简单明了地论证了函数定理。 数论是纯粹数学的分支之一,主要研究整数的性质。 算术基本定理(用反证法易得):又称唯一分解定理,表述为 任何大于1的自然数,都可以唯一分解成有限个质数的乘积,公式:\(n=p_1 ...

Mon Oct 21 18:55:00 CST 2019 0 364
定理及其证明

定理及其证明[补档] 一.定理 背景:首先你要知道什么是定理以及函数。 下面给出定理,对于互质的a,p来说,有如下一条定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 这就是定理 二.剩余系 定义:对于集合\(\{k*m+a|k ...

Sun Jan 19 01:38:00 CST 2020 1 1067
扩展定理

扩展定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...

Tue Mar 06 03:59:00 CST 2018 0 1184
定理及其证明

我真的很逊,所以有错也说不定。 这篇很简,所以看不懂也说不定。 总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。 定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 费马小定理:\(a^{p-1 ...

Wed Jul 17 16:53:00 CST 2019 0 746
定理+筛选法

关系。 函数 函数φ(n)是小于或等于n的正整数中与n互质的数的数目,称为函数 ...

Wed Dec 05 04:04:00 CST 2018 0 854
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM