原文:十一,基于循环神经网络的时序数据聚类算法及其并行化

论文名称基于循环神经网络的时序数据聚类算法及其并行化,王国瑞. 研究对象主要围绕时序数据聚类问题,不同于已有的时序数据聚类方法,本文献的研究是基于循环神经网络的时序数据聚类方法,研究成果可用于金融股票数据分析。 研究动机在时间序列数据挖掘领域,结合循环神经网络将其应用在时间序列数据预测及聚类任务上。 文献综述 基于时间临近度的时序聚类:主要在于序列相似性的衡量,利用不同的相似度计算方法进行聚类。 ...

2019-12-22 16:37 0 794 推荐指数:

查看详情

基于GPU的算法并行化

GPU计算的目的即是计算加速。相比于CPU,其具有以下三个方面的优势: l 并行度高:GPU的Core数远远多于CPU(如G100 GPU有240个Cores),从而GPU的任务并发度也远高于CPU; l 内存带宽高:GPU的内存系统带宽几十倍高于CPU,如CPU (DDR-400)带宽 ...

Thu Jul 28 08:05:00 CST 2016 0 5659
基于spark实现并行化Apriori算法

详细代码我已上传到github:click me 一、 实验要求 在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法。要求程序利用 Spark 进行并行计算。 二、算法设计 2.1 设计思路 变量定义 D为数据集,设Lk是k ...

Fri Dec 21 10:24:00 CST 2018 9 2532
kmeans算法并行化的mpi程序

  用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~      并行化思路:   使用主从模式。由一个节点充当主节点负责数据的划分与分配,其他节点完成本地数据的计算,并将结果返回给主节点。大致过程如下:   1、进程0为主节点 ...

Mon Oct 31 04:38:00 CST 2016 0 3470
数据的常用算法(分类、回归分析、聚类、关联规则、神经网络方法、web数据挖掘)

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动地分析,做出归纳性的推理,从中挖掘出潜在的模式 ...

Thu Dec 14 22:11:00 CST 2017 0 32988
什么?Shell也能并行化

作为一名后台开发,写shell脚本可能是工作中避免不了的,比如日志分析过滤、批量请求和批量插入数据等操作,这些如果单纯靠人工手动去处理既费时又费力,有了shell脚本就可以轻松搞定,当然有人会说可以用python或者其他编程语言,这并不是不可以,但没有哪个有shell这么简单方便快捷的。需要依赖库 ...

Thu Dec 26 21:15:00 CST 2019 0 3861
神经网络算法

内容概要: (1) 介绍神经网络基本原理 (2) AForge.NET实现前向神经网络的方法 (3) Matlab实现前向神经网络的方法 ---引例 文中以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http ...

Thu Oct 06 22:24:00 CST 2016 0 1410
神经网络算法

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。 1.最简单的线性分类 一个最简单的分类 ...

Tue Apr 18 07:44:00 CST 2017 0 1266
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM