原文:MNIST数据集上卷积神经网络的简单实现(使用PyTorch)

设计的CNN模型包括一个输入层,输入的是MNIST数据集中 的灰度图 两个卷积层, 第一层卷积层使用 个 的kernel进行filter,步长为 ,填充 .这样得到的尺寸是 ,即 个 的feature map 在后面进行池化,尺寸变为 第二层卷积层使用 个 的kernel,步长为 ,无填充,得到 ,即 个 的feature map 池化后尺寸为 后面加两层全连接层,第一层将 个神经元线性变换为 个 ...

2019-12-20 14:52 0 1292 推荐指数:

查看详情

卷积神经网络CNN识别MNIST数据集

这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容。 程序的开头是导入TensorFlow: import tensorflow as tf from ...

Mon Oct 14 05:47:00 CST 2019 0 682
TensorFlow训练MNIST数据集(3) —— 卷积神经网络

  前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试上的正确率分别约为90%和96%。在换用多层神经网络后,正确率已有很大的提升。这次将采用卷积神经网络继续进行测试。 1、模型基本结构   如下图所示,本次采用的模型共有8层(包含dropout层)。其中卷积层 ...

Wed Oct 03 08:05:00 CST 2018 0 1714
mxnet卷积神经网络训练MNIST数据集测试

mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 INFO:root:Epoch[0] Batch [100] Speed: 1504.57 samples/sec accuracy=0.113564INFO:root:Epoch ...

Fri Apr 27 00:09:00 CST 2018 0 1140
卷积神经网络概念及使用 PyTorch 简单实现

卷积神经网络   卷积神经网络(CNN)是深度学习的代表算法之一 。具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络”。随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于 计算机视觉、 自然语言处理等领域 ...

Tue Sep 17 19:08:00 CST 2019 0 895
使用PyTorch简单实现卷积神经网络模型

  这里我们会用 Python 实现三个简单卷积神经网络模型:LeNet 、AlexNet 、VGGNet,首先我们需要了解三大基础数据集MNIST 数据集、Cifar 数据集和 ImageNet 数据集 三大基础数据集 MNIST 数据集   MNIST数据集是用作手写体识别的数据集 ...

Wed Sep 18 00:26:00 CST 2019 0 728
TensorFlow 训练MNIST数据集(2)—— 多层神经网络

  在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据   MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...

Tue Oct 02 20:22:00 CST 2018 0 4684
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM