[ ]+的意思是大于0取原值,小于0则取0。这叫做合页损失函数,训练方法叫做margin-based ranking criterion。此loss函数来自SVM,目的是将正和负尽可能分开。一般margin=1。 其中d是L1或L2的距离,表示h+r向量与t向量之间的距离 ...
YOLO V1损失函数理解: (结构图) 首先是理论部分,YOLO网络的实现这里就不赘述,这里主要解析YOLO损失函数这一 ...
损失函数专题 范数 L0范数 L0范数是指向量中非0的元素的个数。如果用L0规则化一个参数矩阵W,就是希望W中大部分元素是零,实现稀疏。 L0范数的应用: 特征选择:实现特征的自动选择,去除无用特征。稀疏化可以去掉这些无用特征,将特征对应的权重置为零。 可解释 ...
问题:线性回归中,当我们有m个样本的时候,我们用的是损失函数是但是,到了逻辑回归中,损失函数一下子变成那么,逻辑回归的损失函数为什么是这个呢? 本文目录 1. 前置数学知识:最大似然估计 1.1 似然函数 1.2 最大似然估计 2. 逻辑回归损失函数理解 ...
一、损失函: 模型的结构风险函数包括了 经验风险项 和 正则项,如下所示: 二、损失函数中的正则项 1.正则化的概念: 机器学习中都会看到损失函数之后会添加一个额外项,常用的额外项一般有2种,L1正则化和L2正则化。L1和L2可以看做是损失函数的惩罚项,所谓 ...
引言 在Quora Question Pairs比赛中,我们的目标是判断给定的两个问题的语义信息是否相同(即是否为重复问题),使用的评估标准是log loss,交叉熵损失函数 \[\frac{1}{N}\sum_{i=0}^{N}{-y_i \log{\widehat{y}_i ...
交叉熵(cross entropy):用于度量两个概率分布间的差异信息。交叉熵越小,代表这两个分布越接近。 函数表示(这是使用softmax作为激活函数的损失函数表示): (是真实值,是预测值。) 命名说明: pred=F.softmax(logits),logits是softmax ...