MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型。 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet ...
自 年 AlexNet 以来,卷积神经网络在图像分类 目标检测 语义分割等领域获得广泛应用。随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG GoogLeNet ResNet DenseNet 等。由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 层 AlexNet 到 层 VGG,再从 层 VGG 到 Goo ...
2019-12-12 16:43 0 318 推荐指数:
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型。 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet ...
1. 轻量化网络 参考: https://zhuanlan.zhihu.com/p/35405071 Mobilenet v1核心是把卷积拆分为Depthwise+Pointwise两部分。 图5 为了解释Mobilenet,假设有 的输入,同时有 个 的卷积。如果设置 ...
十岁的小男孩 本文为终端移植的一个小章节。 目录 引言 论文 A. MobileNets B. ShuffleNet C. Squeezenet D. Xception E. ResNeXt 引言 在保证模型性能 ...
前言 由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。 论文提出了一种新颖 ...
深度学习模型轻量化(上) 移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。 模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加 ...
深度学习模型轻量化(下) 2.4 蒸馏 2.4.1 蒸馏流程 蒸馏本质是student对teacher的拟合,从teacher中汲取养分,学到知识,不仅仅可以用到模型压缩和加速中。蒸馏常见流程如下图所示 1. 老师和学生可以是不同的网络结构,比如BERT蒸馏到BiLSTM网络 ...
原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/79019191 本文就近年提出的四个轻量化模型进行学习和对比,四个模型分别是:SqueezeNet、MobileNet、ShuffleNet ...
CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等。在本文,将对轻量化模型进行总结分析。 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间,简化底层实现方式等这几个方面,提出了深度可分离卷积,分组卷积,可调超参数降低空间分辨率 ...