1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向 ...
之前做特征选择,实现过基于群智能算法进行最优化的搜索,看过一些群智能优化算法的论文,在此做一下总结。 在生活或者工作中存在各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题 在一定成本下,如何使利润最大化 等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 的量 ,以使某一 或某些 指标达到最优的一些学科的总称。 工程设计中最优化问题 optimalization pro ...
2019-12-12 00:34 0 558 推荐指数:
1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向 ...
本文介绍了Bregman迭代算法,Linearized Bregman算法(及在求解Basis Pursuit问题中的应用)和Split Bregman算法(及在求解图像TV滤波问题中的应用)。 由于初学,加之水平有限,文中会有疏漏错误之处,希望大家批评指正赐教。 更新记录 本文持续更新 ...
1 概览 虽然梯度下降优化算法越来越受欢迎,但通常作为黑盒优化器使用,因此很难对其优点和缺点的进行实际的解释。本文旨在让读者对不同的算法有直观的认识,以帮助读者使用这些算法。在本综述中,我们介绍梯度下降的不同变形形式,总结这些算法面临的挑战,介绍最常用的优化算法,回顾并行和分布式架构,以及调研 ...
常见的: 1.梯度下降:全批度下降,随机梯度下降(SGD),小批量梯度下降(batch SGD) 2.牛顿法:优化函数的二阶导数信息,海森矩阵求解困难,还有海森矩阵的逆。 3.拟牛顿法:拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似 ...
转自:http://www.cnblogs.com/maybe2030/ 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一 ...
最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。在学习机器学习的过程中我们发现,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降 ...
阅读目录 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 ...
几种常见的优化算法: 参考:https://www.cnblogs.com/shixiangwan/p/7532830.html 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法 ...