作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
一维卷积只在一个维度上进行卷积操作,而二维卷积会在二个维度上同时进行卷积操作。 转载自:https: www.cnblogs.com LXP Never p .html 一维卷积:tf.layers.conv d 一维卷积常用于序列数据,如自然语言处理领域。 参数: inputs:张量数据输入,一般是 batch, width, length filters:整数,输出空间的维度,可以理解为卷积核 ...
2019-12-07 15:24 0 2014 推荐指数:
作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5× ...
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者 ...
一、前言 1、空间不变性:我们使用的无论哪种方法都应该和物体的位置无关 局部性:神经网络的底层应该只探索输入图像中的局部区域,而不考虑图像远处区域的内容,这就是“局部性”原则 平移不变性:不管出现在图像中的哪个位置,神经网络的底层应该对相同的图像区域做类似的相应 2、卷积 ...
卷积神经网络(CNN) 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型 ...
1. 卷积神经网络结构介绍 卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 CNN 有2大特点: 能够有效的将大数据量的图片降维成小数据量 能够有效的保留图片特征,符合图片处理的原则 目前 CNN 已经得到了广泛的应用,比如:人脸识别 ...
卷积神经网络CNN 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 卷积神经网络(Convolutional Neural Network,CNN 或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。卷积 ...
神经网络,听起来像是计算机科学、生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一 ...