NER 标准 LSTM+CRF 问题 标准成本昂贵 泛化迁移能力不足 可解释性不强 计算资源 JD和CV描述形式不一样 严谨性,简历内容要识别出能力词以及深层挖掘能力词(看起来并不是能力词,但是代表实际的某项能力),所以的深度挖掘词意 ...
写在前面:在初学nlp时的第一个任务 NER,尝试了几种方法,cnn crf lstm crf bert lstm crf,毫无疑问,最后结果时Bert下效果最好。 关于NER: NER即命名实体识别是信息提取的一个子任务,但究其本质就是序列标注任务。 eg: sentence:壹 叁 去 参加一个 NER 交 流 会 tag: B PER I PER O O O O O B ORG I ORG ...
2019-12-06 11:47 0 312 推荐指数:
NER 标准 LSTM+CRF 问题 标准成本昂贵 泛化迁移能力不足 可解释性不强 计算资源 JD和CV描述形式不一样 严谨性,简历内容要识别出能力词以及深层挖掘能力词(看起来并不是能力词,但是代表实际的某项能力),所以的深度挖掘词意 ...
命名实体识别 概念 命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名、地名、机构名、专有名词等等,并把我们需要识别的词在文本序列中标注出来。 例如有一段文本:天津市空港经济区 我们要在上面文本中识别一些区域 ...
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER)。 命名实体识别(Named Entity Recognition,简称NER)是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位。一般来说,命名实体识别的任务 ...
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER)。 常见算法如下: 命名实体识别(Named Entity Recognition,简称NER)是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中 ...
写在前面 该系列主要事对指针网络在NER以及关系抽取系列取得的成果进行展示,并根据大佬们的笔记总结其中的优劣以及理论分析。 GlobalPointer 在之前的工作中,我们NER采用传统的LSTM+CRF,在各个字段指标也取得不错的效果,简单字段类似学历这种f1值均在95以上,复杂 ...
前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具——NLTK和Stanford NLP。在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现NER,只要你坚持看完,就一定会很有收获的。 OK,话不多说,让我们进入正题。 几乎所有 ...
准备工作,先准备 python 环境,下载 BERT 语言模型 Python 3.6 环境 需要安装kashgari Backend ...
近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果。 开源地址:https ...