官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求。但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法。 步骤0:导入相关 步骤1:准备数据 ...
最近在做一个鉴黄的项目,数据量比较大,有几百个G,一次性加入内存再去训练模青型是不现实的。 查阅资料发现keras中可以用两种方法解决,一是将数据转为tfrecord,但转换后数据大小会方法不好 另外一种就是利用generator,先一次加入所有数据的路径,然后每个batch的读入 参考:https: www.jianshu.com p bdae dcfc c https: keras.io z ...
2019-12-04 17:55 0 448 推荐指数:
官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求。但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法。 步骤0:导入相关 步骤1:准备数据 ...
曾经天真的我以为加了下面这个就已经使用了多个GPU训练,事实上,它只用了其他卡的显存。 后来经过查找了一波资料后,终于找到了真正用多GPU训练的方法,这个方法也很简单,从上面的基础上再插入一个函数就可以了。 实验条件: tensorflow 1.13.1 keras ...
https://cloud.tencent.com/developer/article/1010815 8.更科学地模型训练与模型保存 save_best_only打开之后,会如下: ETA: 3s - loss: 0.5820Epoch 00017: val_loss ...
https://keras.io/utils/#multi_gpu_model ...
本文将介绍: 使用keras实现resnet50模型 实现迁移学习-finetune 一,下载kaggle-cifar10数据 下载dataset到本地目录cifar10中 二,实现tensorflow动态按需分配GPU import matplotlib ...
用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时可直接读取文本文件),同时也涉及了plt画图方法 ps:以下代码基于网上的一段程序修改完成,如有 ...
深度学习模型花费时间大多很长, 如果一次训练过程意外中断, 那么后续时间再跑就浪费很多时间. 这一次练习中, 我们利用 Keras checkpoint 深度学习模型在训练过程模型, 我的理解是检查训练过程, 将好的模型保存下来. 如果训练 ...
Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backend时的训练逻辑梳理,主要是结合项目,研究了下源代码! 我们的项目是智能问答机器人 ...