逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214 (在这片博客的基础上我加了一丢丢东西)。 用到的预测函数为 其中,h为预测函数 ...
本文目录: . sigmoid function logistic function .逻辑回归二分类模型 .神经网络做二分类问题 .python实现神经网络做二分类问题 . sigmoid unit 对于一个输入样本 X x ,x , ..., x n ,sigmoid单元先计算 x ,x , ..., x n 的线性组合: z bf w T bf x w x w x ... w n x n 然 ...
2019-12-04 16:52 0 675 推荐指数:
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214 (在这片博客的基础上我加了一丢丢东西)。 用到的预测函数为 其中,h为预测函数 ...
边界: 非线性判定边界: 三、二分类和sigm ...
最简单的基础 以图像为例,输入三个矩阵 红绿蓝,(64*64)*3的像素亮度值---》特征向量值---X【】(64*64*3长度的一维向量)训练一个分类器输入为特征向量,输出为0,1代表是不是猫。 Z=W^T*X+b---->b为R实数W->R*n_x,X->R*n_x ...
前言 最近有遇到些同学找我讨论sigmoid训练多标签或者用在目标检测中的问题,我想写一些他们的东西,想到以前的博客里躺着这篇文章(2015年读研时机器学课的作业)感觉虽然不够严谨,但是很多地方还算直观,就先把它放过来吧。 说明: 本文只讨论Logistic回归的交叉熵,对Softmax回归 ...
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型。这里只讲二分类。 对于二分类的Logistic回归,因变量y只有“是、否”两个取值,记为1和0。这种值为0/1的二值品质型变量,我们称其为二分类变量。 假设在自变量$x_{1}, x_{2}, \cdots ...
问题:线性回归中,当我们有m个样本的时候,我们用的是损失函数是但是,到了逻辑回归中,损失函数一下子变成那么,逻辑回归的损失函数为什么是这个呢? 本文目录 1. 前置数学知识:最大似然估计 1.1 似然函数 1.2 最大似然估计 2. 逻辑回归损失函数 ...
最近在做交叉熵的魔改,所以需要好好了解下交叉熵,遂有此文。 关于交叉熵的定义请自行百度,相信点进来的你对其基本概念不陌生。 本文将结合PyTorch,介绍离散形式的交叉熵在二分类以及多分类中的应用。注意,本文出现的二分类交叉熵和多分类交叉熵,本质上都是一个东西,二分类交叉熵可以看作是多分类交叉 ...
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1。假设我们有一个特征X,画出散点图 ...