训练、测试loss容易出现的问题总结

1、 train loss 不断下降,test loss不断下降:说明网络仍在学习; train loss 不断下降,test loss趋于不变:说明网络过拟合; train loss 趋于不变,test loss不断下降:说明数据100%有问题; train loss 趋于不变 ...

Tue May 14 22:51:00 CST 2019 1 5418
深度学习相关问题的记录:验证loss上升,准确率却上升

验证loss上升,准确率却上升 验证loss上升,acc也上升这种现象很常见,原因是过拟合或者训练验证数据分布不一致导致,即在训练后期,预测的结果趋向于极端,使少数预测错的样本主导了loss,但同时少数样本不影响整体的验证acc情况。ICML2020发表了一篇文章:《 Do ...

Thu May 27 06:51:00 CST 2021 0 6914
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Thu Jul 19 01:39:00 CST 2018 0 11208
验证,测试训练

这三个名词在机器学习领域的文章中极其常见,但很多人对他们的概念并不是特别清楚,尤其是后两个经常被人混用。 Ripley, B.D(1996)在他的经典专著P ...

Mon Jul 29 01:21:00 CST 2013 0 5271
训练验证,测试比例

当数据量比较小时,可以使用 7 :3 训练数据和测试数据,或者 6:2 : 2 训练数据,验证数据和测试数据。 (西瓜书中描述常见的做法是将大约 2/3 ~ 4/5 的样本数据用于训练,剩余样本用于测试) 当数据量非常大时,可以使用 98 : 1 : 1 训练数据,验证数据和测试数据 ...

Mon Jul 01 19:23:00 CST 2019 0 6078
训练验证和测试区别

我们在进行模型评估和选择的时候,先将数据随机分为训练验证和测试,然后用训练训练模型,用验证验证模型,根据情况不断调整模型,选择其中最好的模型,再用训练和测试集训练模型得到一个最好的模型,最后用测试评估最终的模型。 训练 训练是用于模型拟合数据样本。 验证 ...

Thu Mar 03 04:33:00 CST 2022 0 1643
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Sat Oct 12 19:46:00 CST 2019 0 325
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM