本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD有很大概率的,如何进行处理将影响其运行的效率、资源的有效使用 ...
由于streaming流程序一旦运行起来,基本上是无休止的状态,除非是特殊情况,否则是不会停的。因为每时每刻都有可能在处理数据,如果要停止也需要确认当前正在处理的数据执行完毕,并且不能再接受新的数据,这样才能保证数据不丢不重。 同时,也由于流程序比较特殊,所以也不能直接kill 这种暴力方式停掉,直接kill的话,就有可能丢失数据或者重复消费数据。 下面介绍如何优雅的停止streaming jo ...
2019-11-29 19:56 0 433 推荐指数:
本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD有很大概率的,如何进行处理将影响其运行的效率、资源的有效使用 ...
关于这次总结还是要从一个bug说起。。。。。。。 场景描述:项目的基本处理流程为:从文件系统读取每隔一分钟上传的日志并由Spark Streaming进行计算消费,最后将结果写入InfluxDB中,然后在监控系统中进行展示,监控。这里的spark版本为2.2.1。 Bug:程序开发完成之后 ...
一、基础核心概念 1、StreamingContext详解 (一) 有两种创建StreamingContext的方式: val conf ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算。 Structured ...
系统背景 spark streaming + Kafka高级API receiver 目前资源分配(现在系统比较稳定的资源分配),独立集群 --driver-memory 50G --executor-memory ...
1. 流处理的场景 我们在定义流处理时,会认为它处理的是对无止境的数据集的增量处理。不过对于这个定义来说,很难去与一些实际场景关联起来。在我们讨论流处理的优点与缺点时,先介绍一下流处理的常用场景。 ...
5. 实战Structured Streaming 5.1. Static版本 先读一份static 数据: val static = spark.read.json("s3://xxx/data/activity-data/") static.printSchema root ...