Few-shot Learning ShusenWang的课 问题定义 Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务 ...
论文:https: arxiv.org abs . 代码:https: github.com bingykang Fewshot Detection .研究背景 深度卷积神经网络最近在目标检测方面的成功很大程度上依赖于大量带有准确边界框标注的训练数据。当标记数据不足时,CNNs会严重过度拟合而不能泛化。计算机视觉系统需要从少量样本中进行检测的学习能力,因为一些对象类别天生就样本稀缺,或者很难获得它 ...
2019-11-28 21:09 0 1300 推荐指数:
Few-shot Learning ShusenWang的课 问题定义 Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务 ...
Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识。 Matching Networks for One Shot Learning 论文将普通神经网络学习慢的问题归结为模型是由参数 ...
一、参考资料: https://zhuanlan.zhihu.com/p/61215293 https://www.zmonster.me/2019/12/08/few-shot-learning.html 二、论文: 1、 Metric Based 1.1 ...
纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-Shot Learnin ...
One-shot learning Zero-shot learning Multi-shot learning Sparse Fine-grained Fine-tune 背景:CVPR 2018收录了4篇关于小样本学习的论文,而到了CVPR 2019,这一数量激增到了近20篇 ...
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以 ...
一 1 与传统的监督学习不同,few-shot leaning的目标是让机器学会学习;使用一个大型的数据集训练模型,训练完成后,给出两张图片,让模型分辨这两张图片是否属于同一种事物。比如训练数据集中有老虎、大象、汽车、鹦鹉等图片样本,训练完毕后给模型输入两张兔子的图片让模型判断是否是同一种事物 ...