分类算法:对目标值进行分类的算法 1、sklearn转换器(特征工程)和预估器(机器学习) 2、KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据 3、模型选择与调优 4、朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算 ...
k 近邻算法采用测量不同特征值之间的距离来进行分类 优点:精度高 对异常值不敏感 无数据输入假定 缺点:计算复杂度高 空间复杂度高 使用数据范围:数值型和标称型 决策树是一种基本的分类方法,也可以用于回归。决策树模型呈树形结构。在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if then规则的集合。在决策树的结构中,每一个实例都被一条路径或者一条规则所覆盖。通常决策树包括三个步骤: ...
2019-11-27 23:03 0 536 推荐指数:
分类算法:对目标值进行分类的算法 1、sklearn转换器(特征工程)和预估器(机器学习) 2、KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据 3、模型选择与调优 4、朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算 ...
1、K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离。 简单 ...
一、决策树 定下一个最初的质点,从该点出发、分叉。(由于最初质点有可能落在边界值上,此时有可能会出现过拟合的问题。 二、SVM svm是除深度学习在深度学习出现之前最好的分类算法了。它的特征如下: (1)它既可应用于线性(回归问题)分类,也可应用于非线性分类 ...
今年毕业时的毕设是有关大数据及机器学习的题目。因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法。虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但是这提升了自己对与js的理解以及弥补了一点点关于数据结构的弱点。对机器学习感兴趣的朋友 ...
机器学习算法·决策树和朴素贝叶斯算法 一、问题描述 1912年当时世界上体积最庞大,内部设施最豪华的客运轮船’泰坦尼克号’,拥有美誉‘永不沉没’。然而在第一次下水穿越大西洋时,就在航行中撞上冰山,永远沉没海底。船上丧生者达到1500多人。假如我们穿越时空回到了过去,成为船上的一名普通乘客 ...
模型的假设检验(F与T) F检验 提出原假设和备用假设,之后计算统计量与理论值,最后进行比较。 F校验主要检验的是模型是否合理。 导入第三方模块 import numpy as np import pandas as pd from sklearn import ...
贝叶斯定理(Bayes Theorem) 朴素贝叶斯分类(Naive Bayes Classifier) 贝叶斯分类算法(NB),是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型数据进行分类的算法。 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现 ...
第一篇:从决策树学习谈到贝叶斯分类算法、EM、HMM 引言 最近在面试中(点击查看:我的个人简历,求职意向,择司标准),除了基础 & 算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全 ...