Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃、删除缺失值 axis : 删除行还是列,{0 or ‘index’, 1 or ‘columns’}, default 0 how ...
缺失值是指数据集中的某些观测存在遗漏的指标值,缺失值的存在同样会影响到数据分析和挖掘的结果。 一般而言,当遇到缺失值是可以采三种方法处置:删除法,替换法和插补法。 .删除法使用情况:当确实的观测比例非常低是,如 以内,可以直接删除这些缺失的变量。 .替换法:用某种直接替换缺失值,例如,对连续变量而言,可以使用均值或中位数替换,对于离散型变量,可以使用众数替换。 .插补法:是指根据其他非确实的变量 ...
2019-11-27 10:48 0 488 推荐指数:
Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃、删除缺失值 axis : 删除行还是列,{0 or ‘index’, 1 or ‘columns’}, default 0 how ...
1、检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法 - 2、清理/填充缺少 数据Pandas提供了各种方法来清除缺失的值。 fillna()函数 ...
什么是缺失值? 直观上理解,缺失值表示的是“缺失的数据” 创建数据 识别出缺失值或非缺失值 过滤掉一些缺失的行 丢弃缺失值 .dropna() Seriese 使用 dropna 比较简单 ...
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np index = pd.Index(data=["Tom ...
Python Pandas https://www.cnblogs.com/zhenyauntg/p/13188221.html ...
Pandas缺失值处理 Pandas使用这些函数处理缺失值: isnull和notnull: 检测是否是空值,可用于df和Series dropna: 丢弃,删除缺失值 axis: 删除行还是列,{0 ro 'index', 1 or 'columns ...
一、删除缺失值 在进行数据分析和建模的过程中,我们80%的时间往往花在数据准备上:加载、清理、转换、处理和重新排列。为了提高这一过程的效率,Pandas提供了一系列的高级、灵活和快速的工具集,配合Python语言内置的处理功能,可以满足绝大多数场景下的使用需求。 Pandas中,使用 ...
原文链接:https://junjiecai.github.io/posts/2016/Oct/20/none_vs_nan/ 建议从这里下载这篇文章对应的.ipynb文件和相关资源。这样你就能在Jupyter中边阅读,边测试文中的代码。 python原生的None和pandas, numpy ...