一、简介 遗传算法是基于达尔文的生物进化论,是人工智能算法的的重要分支,主要用于解决一类求最优解问题。如旅行商(TSP)问题。 遗传算法是将状态当成染色体,状态里的每一个决策都是染色体上的一个基因。然后根据实际情况生成一个适应度函数,计算每一串染色体对环境的适应度。让适应度高的遗传 ...
遗传算法 前一篇遗传算法的基本内容在之前的博客已经应用过了 之前遗传算法解决的是函数优化问题,即求解最大值或最小值问题 此次要解决的是组合优化问题中的TSP问题,即旅行商问题。 这边先介绍一下TSP问题 TSP问题 Traveling Salesman Problem ,即旅行商问题,又译为旅行推销员问题 货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的 ...
2019-11-19 21:58 0 284 推荐指数:
一、简介 遗传算法是基于达尔文的生物进化论,是人工智能算法的的重要分支,主要用于解决一类求最优解问题。如旅行商(TSP)问题。 遗传算法是将状态当成染色体,状态里的每一个决策都是染色体上的一个基因。然后根据实际情况生成一个适应度函数,计算每一串染色体对环境的适应度。让适应度高的遗传 ...
基于遗传算法的TSP问题求解(C) TSP问题: TSP(Travelling salesman problem): 译作“旅行商问题”, 一个商人由于业务的需要,要到n个城市,每个城市之间都有一条路径和其他所有的城市相连。现在要求从一个城市出发,穿越所有其他所有的城市 ...
参考资料: 遗传算法解决TSP旅行商问题(附:Python实现) 遗传算法详解(GA)(个人觉得很形象,很适合初学者) from itertools import permutations import numpy as np import matplotlib import ...
在以前的文章(简单遗传算法MATLAB实现)中已经介绍过,遗传算法是一种基于达尔文生物进化论的启发式算法,它的核心思想就是优胜劣汰,适应性好的个体将在生存竞争中获得更大的生存机会,而适应差的将更有可能在竞争中失败,从而遭到淘汰。 1. 生物进化 图1用了一个非常形象的实例 ...
遗传算法求解TSP源码及解析 1.算法效果 图 1‑1算法效果1 图 1‑2算法效果2 2.原理说明 TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径 ...
GA——遗传算法 同模拟退火算法一样,都是现代优化算法之一。模拟退火是在一定接受程度的情况下仍然接受一个比较差的解。 遗传算法,是真真正正的和大自然的遗传进化有着非常紧密的联系的,当然遗传进化的只是在生物学中已经讲过了,8个字,物竞天择,适者生存。 简介 《物种 ...
遗传算法解决TSP问题 遗传算法 遗传算法的基本原理是通过作用于染色体上的基因寻找好的染色体来求解问题,它需要对算法所产生的每个染色体进行评价,并基于适应度值来选择染色体,使适应性好的染色体有更多的繁殖机会,在遗传算法中,通过随机方式产生若干个所求解问题 ...
1实验环境 实验环境:CPU i5-2450M@2.50GHz,内存6G,windows7 64位操作系统 实现语言:java (JDK1.8) 实验数据:TSPLIB,TSP采样实例库中的att48数据源 数据地址:http://comopt.ifi.uni-heidelberg.de ...