源码地址:https://github.com/aitorzip/PyTorch-CycleGAN 训练的代码见于train.py,首先定义好网络,两个生成器A2B, B2A和两个判别器A, B,以及对应的优化器(优化器的设置保证了只更新生成器或判别器,不会互相影响 ...
源码地址:https: github.com aitorzip PyTorch CycleGAN 如图所示,cycleGAN的网络结构包括两个生成器G X gt Y 和F Y gt X ,两个判别器Dx和Dy 生成器部分:网络整体上经过一个降采样然后上采样的过程,中间是一系列残差块,数目由实际情况确定,根据论文中所说,当输入分辨率为 x ,采用 个残差块,当输入分辨率为 x 甚至更高时,采用 个残 ...
2019-11-19 10:59 0 1225 推荐指数:
源码地址:https://github.com/aitorzip/PyTorch-CycleGAN 训练的代码见于train.py,首先定义好网络,两个生成器A2B, B2A和两个判别器A, B,以及对应的优化器(优化器的设置保证了只更新生成器或判别器,不会互相影响 ...
源码地址:https://github.com/aitorzip/PyTorch-CycleGAN 数据的读取是比较简单的,cycleGAN对数据没有pair的需求,不同域的两个数据集分别存放于A,B两个文件夹,写好dataset接口即可 上面的代码中,首先定义好buffer ...
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html。 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch。同时,我自己对该项目增加了大量注释 ...
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html。 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch。同时,我自己对该项目增加了大量注释 ...
CycleGAN解决了模型需要成对数据进行训练的困难。 前文说到的pix2pix,它和CycleGAN的区别在于,pix2pix模型必须要求 成对数据 (paired data),而CycleGAN利用 非成对数据 也能进行训练(unpaired data)。 CycleGAN ...
Alamofire源码解读系列(七)之网络监控(NetworkReachabilityManager) 本篇主要讲解iOS开发中的网络监控 前言 在开发中,有时候我们需要获取这些信息: 手机是否联网 当前网络是WiFi还是蜂窝 那么我总结一下具体的使用 ...
源码链接: 链接:https://pan.baidu.com/s/1GkUM9WiGpzUHuFgBe1t2rA 提取码:57zr or https://github.com/VainF/DeepLabV3Plus-Pytorch 以上两个连接是一样的,只不过百度盘中的包含voc数据 ...
首先,看一下YOLO v3 中的网络结构。 YOLO v3 的整体流程 番外步骤: 对训练集图片标记后产生的数据进行K-Means处理,筛选9个anchor-box。 详见:https://www.cnblogs.com/monologuesmw/p ...