简单来说,矩阵是充满数字的表格。 A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = 4 矩阵加减法 两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。 加法交换律 ...
AT的特征值 矩阵A的特征值和AT的特征值是一样的。 求解特征值的方法是det A I ,根据行列式的性质,矩阵的行列式等于矩阵转置的行列式,因此: 因此 也是AT的特征值。 马尔可夫矩阵 矩阵A有 个特点:A中的所有元素都是非负的 A中的每一列之和都等于 。形如A的矩阵称为马尔可夫矩阵。马尔可夫矩阵主要应用在概率领域。将一个马尔可夫矩阵进行方幂运算仍然得到马尔可夫矩阵。 当处理一个微分方程时,特 ...
2019-11-18 21:41 0 711 推荐指数:
简单来说,矩阵是充满数字的表格。 A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = 4 矩阵加减法 两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。 加法交换律 ...
这一部分我们关注正的矩阵,矩阵中的每个元素都大于零。一个重要的事实:最大的特征值是正的实数,其对应的特征向量也如是。最大的特征值控制着矩阵 \(A\) 的乘方。 假设我们用 \(A\) 连续乘以一个正的向量 \(\boldsymbol u_0=(a, 1-a)\), \(k\) 步后 ...
消元矩阵 如果用矩阵表示一个有解的方程组,那么矩阵经过消元后,最终能变成一个上三角矩阵U。用一个三元一次方程组举例: A经过一些列变换,最终得到了一个上三角矩阵U: 回代到方程组后可以直接求解: 如果上面的变换去掉增广矩阵,可以简写为: 矩阵 ...
矩阵空间 矩阵空间是对向量空间的扩展,因为矩阵的本质是向量,所以与向量空间类似,也存在矩阵空间。 在向量空间中,任意两个向量的加法和数乘仍然在该空间内。类似的,所有固定大小的矩阵也组成了矩阵空间,在空间内的任意两个矩阵的加法和数乘也在该空间内。例如,M是所有3×3矩阵构成的空间,空间 ...
一维空间的投影矩阵 先来看一维空间内向量的投影: 向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更“贴近”线性代数的方式表达。 因为p趴在a上,所以p实际上是a的一个子空间,可以将它看作a放缩x倍,因此向量p可以用p ...
特征值矩阵 假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么: 最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示: 没有人关心线性相关的特征向量,上式有意义 ...
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 什么是LU分解 如果有一个矩阵A,将A表示 ...
呢? 本文的相关知识: 正交向量和正交矩阵 (线性代数20——格拉姆-施密特正 ...